# **REDOX STATUS DURING PREGNANCY, PERI-PARTURITION AND POST** CALVING-FIRST INSEMINATION PERIOD IN FERISIAN COWS

## A.K. Kadoom and M.A.A El-Henawy

### Animal production research institute, Agriculture Research Center, Ministry of Agriculture, Egypt

### SUMMARY

A total of fifteen late pregnant Holstein Friesian cows with different parities were selected 3-6 weeks before calving. 231 Jugular Blood samples were collected weekly along 18 weeks for serum separation. Serum Hydrogen peroxide  $H_2O_2$ , Malondialdehyde (MDA) and Total antioxidant capacity (TAC) were measured colorimetrically. Both  $H_2O_2$  and MDA averages were increased gradually and reached the peak(P<0.01) one week before calving, TAC averages were dropped at the 5<sup>th</sup> week and increased gradually to peak again at the last week before calving and fluctuated with a peak (P<0.01) at the 10<sup>th</sup> week post- calving. The Parity and cow effect was significant for ( $H_2O_2$ & MDA) and TAC averages, P<0.05 and p<0.01 respectively. Cows having retained placenta were accompanied by high  $H_2O_2$  (323.9± 19.69 µmol/L) and low serum TAC (1790.8 ± 12.32 mmol/L) concentration, (P<0.01). Cows not bred after calving showed high (P<0.01)  $H_2O_2$  (292.6 ± 11.46 µmol/L) and low TAC averages (1890.1± 17.33 mmol/L) comparing to cows that bred either became pregnant or not.

The study declared that the addition of antioxidant to the ration or the injection of vitamin E may play a role to overcome the redox status of the cows under investigation.

#### Keywords: Frisian, antioxidant, redox status, calving, insemination period

### **INTRODUCTION**

Oxidation reactions are an essential part of normal metabolism as oxygen is the ultimate electron acceptor in the electron flow system that produces ATP (Davies, 1993). Reactive oxygen species (ROS) play different positive roles in vivo, being involved in energy production needed for phagocytosis, cell growth and intercellular signaling regulation. Problems may arise when electron flow and energy production become uncoupled so that oxygen free radicals (ROS) are produced (Nohl et al., 2005). The ROS may be highly damaging, as they can attack biological macromolecules, namely, lipids, proteins and DNA inducing oxidation and cause membrane damage, enzyme inactivation and DNA damage (Halliwell and Gutteridge 1999 and Valko et al., 2004).

Antioxidant capacity system consists of two mechanisms: enzymatic and non enzymatic mechanisms those scavenger free radicals. In cattle, characteristics of these mechanisms depend mainly on the nutritional status of antioxidant minerals especially copper, zinc, iron, selenium, silicon and manganese (Kleczkowski et al., 2003). Polyphenols can stimulate antioxidant transcription and detoxification defense systems through antioxidant responsive elements, ARE (Masella et al., 2005)

Redox studies in cattle have been sporadic and mainly with mastitis, pneumonia, and retained placenta. Recently, studies have been focused on metabolic diseases that affect dairy cows during the peripartum period. Numerous and rapidly evolving methodologies for evaluating oxidative stress are available to researchers and clinicians, each with their own distinct advantages and disadvantages. Differences in models and methodologies make it difficult to make meaningful comparisons, even for studies that seem quite similar superficially (Pietro Celi, 2010).

Pregnancy was associated with decreased total antioxidant capacity (TAC) and uric acid in the first trimester, which gradually increased during pregnancy, reaching normal values during postpartum period (Toescu *et al.*, 2002). In cattle, the peri-parturient period is especially critical for health and subsequent reproductive performance (Erisir *et al.*, 2006).

The aim of this study was to shed more light on the occurrence of oxidative stress in close up period of Friesian cows and follow it till the post-calving first insemination (PCFI) by the determination of Hydrogen peroxide (H2O2) as free radical indicator and Malondialdehyde (MDA) levels as lipid peroxide indicator and total antioxidant capacity status (TAC).

### MATERIALS AND METHODS

#### Animals:

A total of fifteen late pregnant dry Friesian cows with different parities averaging three - six weeks before calving were selected. Cows closely before calving were fed corn silage(5 kg), rice straw (four kg), hay (two kg) and five kg concentrate (consists of 34% un -decorticated cotton seed cake, 24% wheat bran, 22% yellow

Issued by The Egyptian Society of Animal Production

corn, 10% rice bran, 5% line seed cake, 2% molasses, 2% lime stone and 1% common salt). After calving all cows were fed 12 kgs corn silage, four kg rice straw, three kg hay and eight kg concentrate.

Cow had delayed expulsion of fetal membranes > 8 hrs after calving was counted as a retained placental cow and was treated with the protocol applied in the farm as application of systemic and intra uterine antibiotics pessaries, injection of prostaglandin  $F_{2\infty}$  and oxytocin before milking on the second day after calving and followed up till complete recovery. All cows examined at day 35 post-calving to evaluate their reproductive status ( uterine involution , Type of vaginal discharges if it is present, ovarian activity) and then followed up for heat detection and breeding with maximum 11 weeks postpartum.

### **Blood sampling:**

Jugular Blood samples were collected weekly and let for clotting. Serum was separated by centrifugation at 4000 rpm for 10minutes and then frozen and preserved at -40  $^{\circ}$ c till the chemical analysis was done.

#### Chemical analysis:

- Hydrogen peroxide was measured colorimetrically at 510 nm using Biodignostic kits, Cairo, Egypt, Cat. No. HP 25(Aedi H. 1984).
- Malondialdehyde (MDA) was measured colorimetrically at 534 nm using Biodignostic kits, Cairo, Egypt, Cat. No. MDA 25 29 (Satoh K.1978 and ohkawa *et al.*, 1979).
- Total antioxidant were measured colorimetrically using Biodignostic kits, Cairo, Egypt, Cat. No.TA 25 13 at 505nm (Koracevic *et al.*, 2001).

All the colorimetric assays were quantified using spectrophotometer

#### Statistical analysis:

It was carried out using SPSS version 17. Results were expressed as mean $\pm$  SEM. Analysis of variance (one way ANOVA) followed by Duncan' test were used to determine whether there were significant differences among the groups. Differences were considered significant when P values were less than 0.05.

### **RESULTS AND DISCUSSION**

Weekly averages of fifteen blood serum samples along 18 weeks revealed that, both  $H_2O_2$ and MDA averages had a clear trend, it is increased gradually and reached the peak (P<0.01) one week before calving and then declined again but not reached the bottom level again (Figures 1&2,).



Fig. 1. Pre and post calving means of H<sub>2</sub>O<sub>2</sub> in Frisian cows

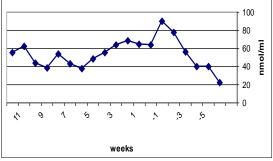



Fig. 2. Pre and post calving means of MDA in Frisian cows

On the other hand, TAC averages had a clear trend pre-calving, it is dropped at the 5<sup>th</sup> week and increased gradually to the peak again on the last week before calving and then declined and fluctuated with a peak (P<0.01) at the  $10^{\text{th}}$  week post- calving (Figure 3). Castillo et al. (2005) noticed no trend for plasma MDA level in close cows 10 weeks before calving till two weeks after calving. The TAC averages had a trend precalving. Castillo et al. (2005) noticed the same TAC level trend, it was peaking (P<0.05) one week after calving and then declined. Kandofer et al. (2010) added that TAC differs (P<0.05) with time pre and postpartum. The maximum level of peroxidation (MDA level) was observed in the first week post partum (pp) comparing with its level in late lactation (Adela et al., 2006). The oxidative stress was increased in cows after parturition under hot climatic condition (Tanaka et al., 2011), while, Bernabucci et al. (2002) concluded that heat stress effect on oxidative status in transition cows doesn't clear and cows with pre-calving high body condition score (BCS) and get higher BCS losses are more sensitive to oxidative stress (Bernabucci et al., 2005) with high ß-hydroxy butyric acid (BHBA) and non-esterified fatty acids (NEFA). On contrast, Gaal et al. (2006) reported that no significant differences were found between pre-calving, calving and postcalving means of both MDA and TAC.

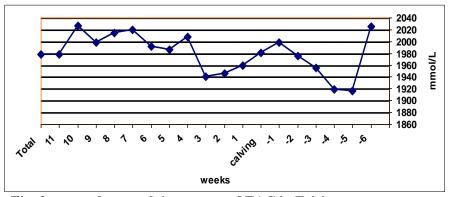



Fig. 3. pre and post calving means of TAC in Frisian cows

| Cow    | Sample N | H <sub>2</sub> O <sub>2</sub> (µmol/L) MDA (nmol/ml) |       |                      |      | TAC (mmol/L)           |       |  |
|--------|----------|------------------------------------------------------|-------|----------------------|------|------------------------|-------|--|
| number |          | Average                                              | SEM   | Average              | SEM  | Average                | SEM   |  |
| 4053   | 14       | 247.2 <sup>b</sup>                                   | 35.73 | 45.7 c**             | 6.43 | 2202.0 <sup>b</sup>    | 15.51 |  |
| 4074   | 14       | 289.6 <sup>a</sup>                                   | 26.95 | 60.1 <sup>b</sup>    | 6.38 | 1836.4 °               | 12.66 |  |
| 4083   | 18       | 241.6 <sup>b</sup>                                   | 29.06 | 54.5 <sup>b</sup>    | 8.50 | 1871.7 °               | 20.36 |  |
| 4132   | 14       | 242.6 <sup>b</sup>                                   | 26.73 | 53.2 <sup>b</sup>    | 6.94 | 2210.7 <sup>a</sup> ** | 16.51 |  |
| 4200   | 15       | 123.0 <sup>c</sup> **                                | 18.98 | 51.6 <sup>b</sup>    | 5.44 | 2220.2 <sup>a</sup> ** | 15.53 |  |
| 4238   | 17       | 268.2 <sup>a</sup>                                   | 25.35 | 53.1 <sup>b</sup>    | 8.88 | 1844.3 °               | 16.10 |  |
| 4341   | 14       | 166.9 <sup>°</sup> **                                | 29.00 | 59.1 <sup>b</sup>    | 9.96 | 2087.0 <sup>b</sup>    | 18.41 |  |
| 4422   | 12       | 291.7 <sup>a</sup>                                   | 24.44 | 48.5 <sup>c</sup> ** | 5.09 | 1859.0 °               | 11.38 |  |
| 4437   | 15       | 337.8 <sup>a</sup>                                   | 44.66 | $72.7^{a^{**}}$      | 6.31 | 2076.5 <sup>b</sup>    | 19.92 |  |
| 4461   | 15       | 349.2 <sup>ª</sup>                                   | 35.74 | 73.4 <sup>a</sup> ** | 7.29 | $1778.7^{d^{**}}$      | 21.78 |  |
| 4463   | 18       | 292.2 <sup>a</sup>                                   | 38.68 | 51.1 <sup>b</sup>    | 7.73 | 2144.0 <sup>b</sup>    | 11.61 |  |
| 4467   | 18       | 326.0 <sup>a</sup>                                   | 33.20 | 55.9 <sup>b</sup>    | 6.40 | 1802.9 <sup>d</sup> ** | 11.54 |  |
| 4476   | 17       | 257.8 <sup>b</sup>                                   | 25.18 | 57.1 <sup>b</sup>    | 7.14 | 1858.7 °               | 12.59 |  |
| 4483   | 18       | 248.1 <sup>b</sup>                                   | 16.58 | 48.8 <sup>b</sup>    | 8.05 | 1857.7 °               | 11.25 |  |
| 4508   | 12       | $289.2^{a}$                                          | 32.31 | 50.4 <sup>b</sup>    | 8.26 |                        |       |  |
| Total  | 231      | 265.2                                                | 8.53  | 55.7                 | 1.94 | 1978.7                 | 12.52 |  |

Table 1. Serum H<sub>2</sub>O<sub>2</sub>, MDA and TAC among cows pre and post-calving

Averages marked with a, b, c & d differ at p<0.05 within the same column

\*\*means differ at P<0.01 within the same column.

Table 2. Serum concentration of H<sub>2</sub>O<sub>2</sub>, MDA and TAC pre and post-calving in cows in relation to Parity

| Sample N | H2O2 (µmol/L)      |                                                                  | MDA (nmol/ml)                                                                              |                                                                                                | TAC (mmol/L)                                                                                                     |                                                                                                                                                                                                                |
|----------|--------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Mean               | SE                                                               | Mean                                                                                       | SE                                                                                             | Mean                                                                                                             | SE                                                                                                                                                                                                             |
| 113      | 297.9 <sup>b</sup> | 11.39                                                            | 57.3                                                                                       | 2.67                                                                                           | 1922.6 <sup>b</sup>                                                                                              | 16.57                                                                                                                                                                                                          |
| 26       | 224.5 <sup>a</sup> | 22.62                                                            | 54.2                                                                                       | 5.84                                                                                           | 1986.7 <sup>a</sup>                                                                                              | 25.69                                                                                                                                                                                                          |
| 92       | 232.8 <sup>a</sup> | 11.26                                                            | 51.8                                                                                       | 2.83                                                                                           | 2030.7 <sup>a</sup>                                                                                              | 20.62                                                                                                                                                                                                          |
| 231      | 264.6              | 7.87                                                             | 54.7                                                                                       | 1.84                                                                                           | 1977.9                                                                                                           | 12.48                                                                                                                                                                                                          |
|          | 113<br>26<br>92    | Sample NMean $113$ $297.9^{b}$ $26$ $224.5^{a}$ $92$ $232.8^{a}$ | Sample NMeanSE $113$ $297.9^{b}$ $11.39$ $26$ $224.5^{a}$ $22.62$ $92$ $232.8^{a}$ $11.26$ | Sample N Mean SE Mean   113 297.9 b 11.39 57.3   26 224.5 a 22.62 54.2   92 232.8 a 11.26 51.8 | Sample N Mean SE Mean SE   113 297.9 b 11.39 57.3 2.67   26 224.5 a 22.62 54.2 5.84   92 232.8 a 11.26 51.8 2.83 | Sample N Mean SE Mean SE Mean   113 297.9 <sup>b</sup> 11.39 57.3 2.67 1922.6 <sup>b</sup> 26 224.5 <sup>a</sup> 22.62 54.2 5.84 1986.7 <sup>a</sup> 92 232.8 <sup>a</sup> 11.26 51.8 2.83 2030.7 <sup>a</sup> |

Averages marked with a & b in the same column are different at P<0.05

Table (1) shows that individual cow effect was significantly clear for  $H_2O_2$ , MDA and TAC averages where parity has a significant effect on serum  $H_2O_2$  mean (297.9±11.39) µmol/L which was high ( P<0.05) in the first lactation cows while TAC concentration was low (1922.6±16.57) mmol/L comparing to the 2<sup>nd</sup> and >2 lactations. The serum MDA level was decreased insignificantly with the increase of the lactation number as shown in Table (2).

As shown in Table (3), cows had got retained placenta were accompanied by significant high  $H_2O_2$  (323.9± 19.69 µmol/L) and low serum TAC (1790.8 ± 12.32 mmol/L) concentration (P<0.01) as shown in table-4, while, MDA were

insignificantly high in ROP cows (60.2  $\pm$  4.31 nmol/ml) than normal cows (54.6  $\pm$  2.17 nmol/ml). Erisir et al. (2006) and Yildiz et al. (2011) agreed that serum or plasma MDA concentration in ROP cows did not significantly altered from normal one while, the erythrocyte increased in Dystocia cow MDA markedly compared with eutocia cow (Yildiz et al., 2011). On contrast, Kandofer et al. (2010) found that blood means of oxidants and antioxidants did not differ among animals with or without retained placenta. The mean MDA concentration in the acute puerperal metritis was significantly higher in the diseased cows than in controls. Hanafi et al. (2008) noticed that MDA was significantly

high (P<0.001) in buffalo cows exhibited endometeritis while, TAC was low. These results demonstrate the occurrence of an oxidative stress in cows with acute puerperal metritis which is exacerbated throughout antioxidant overutilization (Kizil et al., 2010 and Heidarpour et al., 2012). After successful treatment for clinical endometritis, serum MDA concentrations have also significantly decreased and TAS values were increased when treatment was successful in subclinically and clinically affected cows 7 days after (Heidarpour et al., 2012).

Cows that did not exhibit estrus signs and not bred after calving showed high (P<0.01)  $H_2O_2$ (292.6±11.46) µmol/L and low TAC averages (1890.1±17.33) mmol/L comparing to cows came in heat and bred either became pregnant or not as shown in table-4. In agreement with this, Ali *et al.* (2014) noticed that MDA levels of repeat breeder and anestrous cows was high (P<0.01) than those came in heat. Excess oxidation, however, causes oxidative stress, resulting in the dysfunction of reproductive processes and antioxidant that reduce the levels of ROS maintain the quality of gametes and support reproduction (Fujii *et al.*, 2005).

Lastly, we concluded that fine addition of antioxidant as copper, zinc and selenium to the ration or by injection of vitamin E may play a role to overcome the oxidant stress and might help in improving the post-calving reproductive status of the animal.

Table 3. Serum concentration of  $H_2O_2$ , MDA and TAC pre and post-calving in cows in relation to the incidence of retained placenta (ROP)

| Sample N | $H_2O_2$ (µn | nol/L)                        | MDA (n                                      | MDA (nmol/ml)                                              |                                                                         | TAO (mmol/L)                                                                                 |  |
|----------|--------------|-------------------------------|---------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
|          | Mean         | SE                            | Mean                                        | SE                                                         | Mean                                                                    | SE                                                                                           |  |
| 186      | 250.9        | 9.19                          | 54.6                                        | 2.17                                                       | 2012.7**                                                                | 12.97                                                                                        |  |
| 45       | 323.9**      | 19.69                         | 60.2                                        | 4.31                                                       | 1790.8                                                                  | 12.32                                                                                        |  |
| 231      | 265.2        | 8.53                          | 55.7                                        | 1.94                                                       | 1978.7                                                                  | 12.52                                                                                        |  |
|          | 186<br>45    | Mean   186 250.9   45 323.9** | Mean SE   186 250.9 9.19   45 323.9** 19.69 | Mean SE Mean   186 250.9 9.19 54.6   45 323.9** 19.69 60.2 | Mean SE Mean SE   186 250.9 9.19 54.6 2.17   45 323.9** 19.69 60.2 4.31 | Mean SE Mean SE Mean   186 250.9 9.19 54.6 2.17 2012.7**   45 323.9** 19.69 60.2 4.31 1790.8 |  |

\*\* The average means in the same column significantly differ at P<0.01

Table 4. Serum concentration of H<sub>2</sub>O<sub>2</sub>, MDA and TAC pre and post-calving in cows in relation to post partum breeding

| Post                   | Sample | $H_2O_2$ (µmol/L)  |       | MDA (nmol/ml) |      | TAO (mmol/L)        |       |
|------------------------|--------|--------------------|-------|---------------|------|---------------------|-------|
| calving<br>status      | N      | Mean               | SE    | Mean          | SE   | Mean                | SE    |
| Not Bred               | 100    | 292.6 <sup>a</sup> | 11.46 | 55.2          | 2.86 | 1890.1 <sup>b</sup> | 17.33 |
| Repeat bred            | 105    | 246.4              | 11.76 | 54.5          | 2.67 | 2037.5 <sup>a</sup> | 17.85 |
| Bred & get<br>pregnant | 26     | 224.5 <sup>b</sup> | 22.62 | 54.2          | 5.84 | 1986.7 <sup>a</sup> | 25.69 |
| Total                  | 231    | 264.6              | 7.87  | 54.7          | 1.84 | 1977.9              | 12.48 |

a & b differ at P<0.01 within the same column.

### REFERENCES

- Adela, P., D. Zinveliu, P R.AI. op, S. Anderi and E. Kiss, 2006. Antioxidant status in dairy cows during lactation. Buletin USAMV-CN. 63: 130-135
- Aebi, H. 1984: Methods Enzymol 105, 121-126
- Ali F., Lodhi L.A., Hussain R. and Sufyan M., 2014. Oxidative status and some serum macro minerals during estrus, anestrous and repeat breeding in Cholistani cattle. Pakistan veterinary journal. ISSN: 0253-8318(RPRINT), 2074-7764
- Bernabucci, U., B. Ronchi, N. Lacetera and Nardone A., 2002. Markers of oxidative status n plasma and erythrocytes of transition dairy cows during hot season. J. Dairy Sci. 85: 2173-2179
- Bernabucci, U., B. Ronchi, N. Lacetera and A. Nardone, 2005. Influence of body Score on relationships between metabolic status and oxidative stress in periparturient dairy cows. J. Dairy Sci.88:2017-2026

- Castillo, C., J. Hernandez, M. Bravo, M. Lopez-Alonso, Pereira V and J. L. Benedito, 2005. Oxidative and early status during the pregnancy and early lactation in dairy cows. The Veterinary Journal 169: 286-292
- Davies, K.J., 1993. Oxidative stress: the paradox of aerobic life. Biochem Soc Symp; 6: 1-31
- De Smet, S., N.Wullepit, M. Ntawubizi, B. Beerda, R.F. Veerkamp and K. Raes, 2006. Veerkamp & K. Raes 57<sup>th</sup> EAAP Annual Meeting, Antalya, 17-20
- Erisir, M., Y. Akar, S.Y. Gurgose and M.Yuksel, 2006. Changes I plasma malondialdehyde concentration and some erythrocyte antioxidant enzyme in cows with prolasus uteri, caesarean section, and retained placenta. Revue Med. Vet., 157.2: 80-83
- Fujii, J., Y. Iuchi and F. Okada, 2005. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod. Bio. and Endo., 3: 43 doi: 10.1186/1477-7827-3-43

- Gaal, T., P. Ribiczyne, K. Stadler, J. Jakus, J. Reiczigel, Kover Pal, M. Mezes and L. Sumeghy, 2006. Free radicals, lipid peroxidation and the antioxidant system in the blood of cows and new born calves around calving. Comparative Biochemistry and Physiology, Part B. 143: 391-396
- Halliwell B. and Gutteridge JMC, 1999. Free radicals in biology and medicine. 3<sup>rd</sup> edition .Oxford: Clarendon press; chapter 4.
- Hanafi Emtenan M., Ahmed W.M., Abd-ElMoez Sherein I., 2008. Effect of clinical endometritis on ovarian activity and oxidative stress status in Egyptian buffalocows. Am.Euras.J.Ag .ric. & Environ.Sci. 4(5): 530-536
- Heidarpour M., Mohri M., Fallah-Rad A.H., Dehghan Shahreza F. and Mohammad M., 2012. Oxidative stress and trace elements before and after treatment in dairy cows with clinical and subclinical endometritis Revue Méd. Vét. 163. 12: 628-633
- Kankofer M., Albera E., Feldman M., Gundling N. and Hoedemaker M., 2010. Comparison of antioxidative/ oxidative profiles in blood plasma of cows with and without retained fetal membranes. Theriogenology 74: 1385-1395
- KIZIL O., AKAR Y., YUKSEL M. AND SAAT N., 2010 Oxidative stress in cows with acute puerperal metritis *Revue Méd. Vét.*, 161 (7) 353-357
- Koracevic D., Koracevic G. Djordjevic V, Andrejevic S and Cosic V., 2001: Method for the measurement of antioxidant activity in human fluids. J. clin. Pathol. 54, 356-361
- Kleczkowski M., Klucinski W., Sikora J., Zdanowigz M., and Dziekan P., 2003. Role of antioxidants in the protection against oxidative stress in cattle- non enzymatic

mechanisms (part2). Pol J Vet Sci.6 (4): 301-308 (Abstract)

- Masella, R., R. Benedetto, R. Vari, C. Filesi and C. Giovannini, 2005. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J of Nutritional Biochemistry. 16: 577-586
- Nohl, H., L. Gille and K. Stanick, 2005. Intracellular generation of reactive oxygen species by mitochondria. Biochem Phamacol. 69: 719-723
- Ohkawa, H., W. Ohishi and K. Yagi, 1979: Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal biochem.95, 351(2):351-8
- Pietro Celi, 2010. Biomarkers of oxidative stress in ruminant medicine. Immunopharmacology and Immunotoxicology: 1–8
- Satoch, K., 1978: Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method.Clinica chimica Acta, 15; 90(1):37-43.
- Tanaka, M., Y. Kamiya, T. Suzuki and Y. Nakai, 2011. Changes in oxidative status in periparturient dairy cows in hot conditions. Animal Science journal, 82, Issue 2: 320-324
- Toescu, V., S.L. Nuttall, U. Martin, M.J. Kendall and F. Dunne, 2002. Oxidative stress and normal pregnancy. Clinical Endocrinology, 57: 609-613
- Valko, M., M. Izakovic, M. Mazur, C.J. Rhodes and J. Telser, 2004. Role of oxygen radicals in DNA damage and cancer incidence. Mol cell Biochem. 266: 37:56
- Yildiz, H., H. Simsik, N. Saat and M. Yuksel, 2011. Effect of dystocia on lipid peroxidation and enzymatic and non enzymatic antioxidants in crossbred dairy cows. Bul. Vet. Inst. Pulawy 55: 135-139

# حالة الأكسدة اثناء فترة الحمل المتأخر والولادة وما بعد الولادة حتى الشياع في الأبقار الفريزيان

## د. عبدالجواد خليفة عبدالجواد قادوم و د. محمود عبد الغنى احمد الحناوى

معهد بحوث الانتاج الحيوانى- مركز البحوث الزراعية- وزارة الزراعة- مصر

خمس عشرة بقرة جافة عشار اختيرت عشوائيا ما بين الاسبوع الثالث و السادس قبل الولادة. ٣٣١ عينة دم جمعت اسبوعيا على مدى ١٨ اسبوع لفصل السيرم لقياس تركيز فوق اكسيد الهيدروجين (H<sub>2</sub>O<sub>2</sub>) و مالونداى الديهايد( MDA) و اجمالى مضادات الاكسدة (TAC) مستخدما مقياس مطياف الضوء. فقد أظهرت النتائج أن كلا من متوسط 2<sub>9</sub><sub>2</sub> و MDA اوضحا اتجاها حيث ازدادا بشكل معنوى قيل الولادة ليصلا القمة عند الاسبوع الاول قبل الولادة(0.05<p) وفى المقابل انخفضت مضادات الاكسدة الخامس قبل الولادة لتأخذ فى الارتفاع ولتصل اول قمة قبل الولادة (0.05<p) وفى المقابل انخفضت مضادات الاكسدو عند الاسبوع الولادة (9.001). وكذلك فالاختلافات الفردية و عدد الولادة بأسبوع ثم تتموج القيم لتصل الى اعلى قمة عند الأسبوع العاشر بعد و 0.011عند (2003). وكذلك فالاختلافات الفردية و عدد الولادات أوضحت اختلافا معنويا حيث ازدادت كل من 2001) عند (10 و MDA و معنويا حيث الاحتلافات الفردية و عدد الولادة بأسبوع ثم تتموج القيم لتصل الى اعلى قمة عند الأسبوع العاشر بعد و MDA عند (2003). وكذلك فالاختلافات الفردية و عدد الولادات أوضحت اختلافا معنويا حيث ازدادت كل من 2002) عند (100 و KDA عند (2003). ولاحتان الولادة المادينة و عدد الولادات أوضحت اختلافا معنويا حيث ازدادت الولادات الولادي الولادي الولادي الولادي الولادي الولادة الولادي الولادي الديم معنوي المعامر عالي من 2001). ولاحة الولادي الولادي أول عن مثيلاتها ذات الولادات المتعددة. وكذلك و 1004عند (2005) وانخفاض XDA عند (2001) فى الابقار ذات الولادة الأولى عن مثيلاتها ذات الولادات المتعددة. وكذلك

ومَن هذا نستخلص ان الابقار وخاصة التي تلد للمرة الاولى يزداد بها مواد الاكسدة بشكل ملحوظ وانه يجب مراعاة اضافة او حقن مصادات الاكسدة في الفترة ما قبل الولادة بأسبو عين والتي ربما تساعد على تجاوز مثل هذه الانضغاطات.