USING LEATHER CHROME SHAVINGS IN PRODUCING GYPSUM BOARD FOR
ACHIEVING SUSTAINABILITY

A. I. Nasr*1 and M. I. Morsy2

1-Wool Production and Technology, Animal and Poultry Production Division, Desert Research Center, Cairo, Egypt, 2- Department of Agricultural & Biosystems Engineering, Faculty of Agriculture, Alexandria University, Egypt.
*Corresponding Author: Email: ainasr@yahoo.com

SUMMARY

Animal skin, as a byproduct of farm animals, is the main raw material for leather tanning industry that contributes to optimizing farm economic revenues. Creating new usage of the skins, residuals and wastes of manufacture processes insures extra income to tanning industry and reduces the contaminants which may be resulted during hides' production. About three million tons of leather chrome shavings (LCS) are generated annually from leather tanning containing trivalent chromium. The utilization of LCS is a way to prevent environmental hazards and avoid economic loss of leather tanning. In this regard, the present study aimed to utilize LCS in different proportions (0%, 10%, 15%, 20% and 25%) to manufacture gypsum boards, and in turn, to evaluate their physical-mechanical characteristics. The pH value and contents of moisture, ash and chromium salt of LCS, as well as, bulk density, compressive and flexural strengths, thermal conductivity and construction morphology via electron microscopy scanning (EMS) of prepared LCS composites mixtures were determined. The homogeneity and good interactions among fibers of LCS and gypsum were observed in EMS micrographs. The increment of LCS content decreased (P<0.01) density, compressive strength, flexural strength and thermal conductivity in prepared gypsum composites. The results pointed to the possibility of using the LCS in making gypsum boards due to its homogeneous structure. Moreover, the gypsum board with high content of LCS is suitable for using as a filling and separation substance in buildings to increase the thermal insulation, and reduce the construction costs.

Keyword: Leather tanning industry, physical properties and thermal conductivity

INTRODUCTION

Animal production generates meat, milk, wool and hair as main products, additionally hides as byproducts (FAO, 2011). Leather tanning is the way to convert the animal hides or skins into genuine leather to be utilized in a wide range of usages and maximizing their economic value (Husen et al., 2016).

During tanning, different mechanical and chemical processes are applied and different liquid, solid, and gaseous contaminants are produced (Gudro, 2011). Solids form the greatest amounts among total leather tanning wastes, accounting for about 80% of raw skins or hides weight (Bank, 1999). Whilst chrome tanning is the most widely used method worldwide (Agrawal and Kumar, 2006), leather chrome shavings (LCS) are the greatest solid waste of leather chrome tanning industry (Kolomaznik et al., 2003). LCS are the output from the shaving process to adjust the desired pelt thickness to be suitable for end uses of finished leathers. Thus, tremendous quantities of LCS are generated, estimated as about 10% of wet salted hide or skin weight that ranks between 35-40% of the total tannery solid wastes (Rao et al., 2002). That quantity was estimated at 3 million tons/year (FAOSTAT, 2017).

The chemical structure of LCS is mainly a collagenous protein cross-linked with chromium salts (Saravanabhavan et al., 2005). Depending on tanning process, LCS contains 2.5-5% chromium mainly in the form of trivalent chromium (Tahiri et al., 2007). Globally, the traditional major ways of LCS waste management are landfill or incineration, which creates environmental threats due to the toxicity and carcinogenic effect of chromium salts when converts into the hexavalent form (Pati et al., 2014).

Previous investigations aimed to increase the economic value of LCS while decreasing its environmental impact, without damage to the sustainability of leather tanning industry. The utilization of LCS was by using it directly for producing leather boards or treating it for modifying its chemical structure for producing eco-friendly products that can be used in other useful proposes (Sathish Kumar and Vijayaravind, 2015; Eylem and Pere, 2017 and Ponsubbiah et al., 2018).

Gypsum board is a panel made of calcium sulfate dehydrates with or without additives, used in the construction of interior walls and ceilings. The panel properties differ according to components. Fibers such as fiberglass, paper, or a combination of them are commonly mixed when producing panels to reinforce them and improve their physical properties (Li and Ren, 2011). Few preliminary investigation, utilized LCS in producing cementitious mortars but
no evidence of using it to manufacture gypsum board was detected.

This study aimed to produce LCS-gypsum boards by adding LCS in increasing proportions during gypsum panel manufacture and evaluate the properties and microstructure of the composite. Achieving the maximum utilization of LCS will reduce the environmental hazards, increase the added value of LCS and, consequently ensure the sustainability of leather tanning industry.

MATERIALS AND METHODS

Materials:
Leather chrome shavings (LCS):
LCS was collected from El-Shafei Sons tannery located in El-Max district, Alexandria, Egypt and was naturally dried in an open shaded area for five days. Figure (1) shows the natural fresh LCS without any chemical or physical treatments changes.

Characteristics of LCS were evaluated in the chemistry laboratory of Mariout Research Station, Desert Research Center, according to the standard procedures (ASTM, 2014). The studied characteristics were moisture, ash, chromium, fat and protein contents in addition to pH values and bulk density which was calculated as the ratio of weight to volume for each specimen. Water saturation and water loss for LCS in 48 hrs were determined as:

\[R = \frac{(W_t - W_0)}{W_0} \times 100 \]

where \(R \) is the water saturation or water loss ratio, \(W_t \) is the wet specimen weight at a specific time and \(W_0 \) is the dry specimen constant weight.

Gypsum:
The utilized gypsum was produced in Sinai Gypsum Factory and consisted of 95% calcium sulfate semi hydrate (CaSO_4 0.5 H_2O). The chemical composition of the utilized gypsum (Table 1) was determined by X-ray fluorescence technique in the Faculty of Science - Alexandria University Laboratories.

Water:
A clean tap water was used for these experiments.

Test method:
Composites preparation:
An attempt was made to use LCS for the production of LCS-gypsum composite mixtures. These mixtures were prepared by hand mixing of gypsum, water and LCS in increasing proportions of 0, 5, 10, 15, 20 and 25% (Table 2). The formulated composites were denoted as LCSGC0, LCSGC5, LCSGC10, LCSGC15, LCSGC20 and LCSGC25, respectively. Water was added to obtain a homogeneous mixture for good workability.

Physico-mechanical properties:
Compressive and flexural strengths:
Wooden molds (4 × 4 × 16 cm) were used for preparing three prismatic test specimens for each studied mixture. The molds were filled with the studied composite mixtures and then left at room temperature for 24 hrs. Thereafter, compressive and flexural strengths were measured according to DIN (2005) at days 1, 7 and 28 of molds filling. Equations (2) and (3) were used for calculating compressive and flexural strengths, respectively:

\[C_s = \frac{F_c}{B^2} \]
\[F_s = \frac{3 \times P_f \times L}{2 \times B \times T^2} \]

where \(C_s \) is the compressive strength, \(F_c \) is the compressive failure load and \(B \) is the sample width.

\(F_s \) is the flexural strength, \(P_f \) is the flexural failure load, \(L \) is the sample length, \(B \) is the sample width and \(T \) is the sample thickness.

Figure (2) shows specimens after flexural strength test.

Table 1. Basic chemical composition of gypsum

<table>
<thead>
<tr>
<th>Element (%)</th>
<th>Fe_2O_3</th>
<th>SiO_2</th>
<th>CaO</th>
<th>Al_2O_3</th>
<th>MgO</th>
<th>SO_3</th>
<th>Na_2O</th>
<th>Traces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gypsum</td>
<td>0.04</td>
<td>0.23</td>
<td>32.7</td>
<td>0.09</td>
<td>0.42</td>
<td>43.68</td>
<td>0.03</td>
<td>22.81</td>
</tr>
</tbody>
</table>

Table 2. Proportions of different leather chrome shaving gypsum composite (LCSGC)

<table>
<thead>
<tr>
<th>Mixture</th>
<th>Gypsum, g</th>
<th>CTLS, g</th>
<th>Water, g</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCSGC0</td>
<td>500</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>LCSGC5</td>
<td>475</td>
<td>25</td>
<td>215</td>
</tr>
<tr>
<td>LCSGC10</td>
<td>450</td>
<td>50</td>
<td>230</td>
</tr>
<tr>
<td>LCSGC15</td>
<td>425</td>
<td>75</td>
<td>245</td>
</tr>
<tr>
<td>LCSGC20</td>
<td>400</td>
<td>100</td>
<td>260</td>
</tr>
<tr>
<td>LCSGC25</td>
<td>375</td>
<td>125</td>
<td>275</td>
</tr>
</tbody>
</table>
Bulk density:
Density was measured for 3 prisms of dimensions (4 × 4 × 16 cm) for each formulated composite at days 1, 3, 7 and 28 after filling molds. After drying samples at 105±5°C and reaching a constant weight, the weight and volume of each sample were recorded and the bulk density was calculated using equation (4).

\[
D = \frac{W_d}{L \times B \times T}
\]

(4)

where \(D\) is the bulk density, \(W_d\) is the dry sample weight, \(L\) is the sample length, \(B\) is the sample width and \(T\) is the sample thickness.

Thermal conductivity test:
Thermal conductivity was measured according to ASTM-D5930 by placing specimen between hot and cold plates. The measurements were made on each of 3 prisms of dimensions 4 × 4 × 16 cm for each specimen at days 1, 7 and 28 after filling molds. The thermal conductivity was calculated using Fourier’s law (5):

\[
K = \frac{Q \times T}{(T_h - T_c) \times A}
\]

(5)

where \(K\) is the thermal conductivity, \(Q\) is the steady state conducted heat transfer across the sample, \(T\) is the sample thickness, \(T_h\) is the temperature of the hot plate, \(T_c\) is the temperature of the cold plate, and \(A\) is the heat transfer area of the sample.

Electron microscopy scanning (EMS)
An electron microscopy of JEOL model JSM-5300 with accelerating voltage of 25 kV in the Laboratory of the Faculty of Science, Alexandria University was used to capture electron micrographs for each composite mixture.

Statistical analysis:
Data were analysed using general linear model (GLM) procedure of SAS program for analysis of variance by adopting the fixed effects model:

\[Y_{ijk} = \mu + C_i + A_j + CA_{ij} + e_{ijk} \]

Where \(Y_{ijk}\) is the observation taken, \(\mu\) is the overall mean, \(C_i\) is a fixed effect of the \(i\)th LCS proportion, \(A_j\) is a fixed effect of the \(j\)th age of specimen, \(CA_{ij}\) is the interaction effect between LCS proportion and specimen age, and \(e_{ijk}\) is a random error assumed to be normally distributed with mean=0 and variance=\(\sigma^2\).

Means were significantly separated using Duncan’s multiple range tests.

RESULTS

Leather chrome shavings (LCS) characteristics:
The normal shapes of fresh LCS pieces were variable in length between less than 1 mm to about 5 cm (Figure 1). The scanning electron micrographs show the fibrous structure of LCS at 1500x and 5000x (Figure 3). The micrographs revealed that collagen fibers emerged as close bundles with diameters lower than 10\(\mu\)m with air gaps appearing among the bundles. Moreover, the smooth surface predominates in the appearance of these fibrous bundles.

Bulk density and chemical properties of LCS are shown in Table (3). The bulk density value being 0.1027 g/cm³, showed that LCS is a light weight material that can furnish large space. The chemical properties showed that LCS has low moisture content (10.24%) but high contents of trivalent chromium salt (2.51%) in total ash content (12.37%). Additionally, pH of LCS is strong acidic (3.32ml mol/L) when soaked in water.

Figure 2. Specimens after the flexural strength test.

Figure 3. Electron micrograph of leather chrome shaving (LCS), (A) at 1500x and (B) at 5000x.
Table 3. Leather chrome shaving (LCS) characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ASTM</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture content</td>
<td>D-6403</td>
<td>10.24%</td>
</tr>
<tr>
<td>Ash content</td>
<td>D-2617</td>
<td>12.37%</td>
</tr>
<tr>
<td>Chromium content</td>
<td>D-6714</td>
<td>2.51%</td>
</tr>
<tr>
<td>pH Value</td>
<td>D-2810</td>
<td>3.32ml mol/L</td>
</tr>
<tr>
<td>Bulk density</td>
<td>D-6683</td>
<td>0.1027 gm/cm³</td>
</tr>
</tbody>
</table>

Figure (4) shows the capacity of LCS for water saturation and water loss in 48 hrs. The saturation curve displayed that LCS absorbed water at the ratio of 150-170% of its weight in the first 3 minutes after soaking but absorption continued slower to reach 190% of LCS weight after 60 minutes of soaking. Thereafter, absorption fluctuated slower to reach 192% after 48 hrs of soaking. Regarding the water loss curve, LCS lost water in equal rates until reaching initial dry weight after 24 hrs.

From the saturation curve, LCS absorbed about 150-175% water during first 3 minutes of soaking, while the water absorption was increased slightly till fixed after 60 min of soaking at 190%. Thereafter, water absorption fluctuated in a narrow range between 190 and 192% till 48 hrs of soaking. Regarding to the loss curve, LCS lost water at a similar rate until it returned to its dry weight again within 24 hrs of taken it out of water.

Characteristics LCSGC:

Flexural strength test showed that the distribution of LCS fibers was perfect in all specimens of the prepared LCSGC (Figure 2) and Figure (5) shows the difference in scanned electron micrographs between both of LCSGC0 and LCSGC25 composites. Gypsum crystals of LCSGC0 showed distinctive needle shape with smooth surface and many overlapping points among crystals, and the air gaps among crystals were small, while for LCSGC25, the gypsum crystal shape and air gaps volume were larger. Adding LCS to composites caused gypsum particles to appear stuck to the collagen fibers and the volume of crystal needles was higher. Thus, the composite between LCS and gypsum particles formed a complex of homogenous structure.

The effects of LCS addition, specimen age and interaction between them on the physical properties of the prepared LCSGC are shown in Table (4). The increment of LCS addition decreased (P<0.01) the physical properties of density, compressive and flexural strengths and thermal conductivity and therefore the panels became weaker by increasing the percentage of LCS, but thermal insulation property improved. The density values ranged between 1.25 and 1.98 t/m³ with continuous decrease by increasing LCS proportion up to 15% then remained constant. Thereafter, other physical properties showed wide ranges of changes with more significant differences among different LCS concentrations.

On the other hand, all physical properties of LCSGCs were not affected by age of specimen except thermal insulation, which was increased (P<0.05) from day 7 of composites formulation. A slight decrease in the bulk density was found when specimens’ age increased, but an inverse trend was found for compressive and flexural strength values.

Moreover, the effect of interaction between LCS proportions and specimen age was highly significant (P<0.01) for all physical properties (Table 4). The changes of physical parameters due to the interaction are shown in Figure (6). The bulk density decreased by the increment of LCS proportion and age of formulated composites, whilst the properties of compressive and flexural strengths and heat insulation were improved. The positive correlations between bulk density and compressive strength, flexural strength and thermal conductivity were strong as shown in Figure (7). R² values were 0.973, 0.968 and 0.971 for the correlation between bulk density with compressive strength, flexural strength and thermal conductivity, respectively.

![Figure 4. Water imbibition and water loss of leather chrome shaving (LCS).](image)
Figure 5. Electron micrographs scanning of LCSGC0 and LCSG25 at 5000X after 28 days of formulation.

Table 4. Means ± SEM of physical properties for LCSGC as affected by LCS content, specimen age and their interactions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Density (t/m³)</th>
<th>Compressive strength (MPa)</th>
<th>Flexural strength (MPa)</th>
<th>Thermal conductivity (W/m°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leather chrome shaving, % by weight (C)</td>
<td>****</td>
<td>****</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>LCSGC0</td>
<td>1.98a</td>
<td>6.91a</td>
<td>4.36a</td>
<td>0.599a</td>
</tr>
<tr>
<td>LCSGC5</td>
<td>1.72b</td>
<td>5.66b</td>
<td>3.82b</td>
<td>0.526b</td>
</tr>
<tr>
<td>LCSGC10</td>
<td>1.47c</td>
<td>4.42c</td>
<td>3.11c</td>
<td>0.441c</td>
</tr>
<tr>
<td>LCSGC15</td>
<td>1.34d</td>
<td>3.62d</td>
<td>2.73d</td>
<td>0.392cd</td>
</tr>
<tr>
<td>LCSGC20</td>
<td>1.26e</td>
<td>2.64e</td>
<td>2.27e</td>
<td>0.335fde</td>
</tr>
<tr>
<td>LCSGC25</td>
<td>1.25d</td>
<td>2.39e</td>
<td>2.08f</td>
<td>0.311f</td>
</tr>
<tr>
<td>Age (A)</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>*</td>
</tr>
<tr>
<td>1 day</td>
<td>1.63</td>
<td>3.88</td>
<td>2.89</td>
<td>0.500b</td>
</tr>
<tr>
<td>7 days</td>
<td>1.45</td>
<td>4.33</td>
<td>3.07</td>
<td>0.407b</td>
</tr>
<tr>
<td>28 days</td>
<td>1.43</td>
<td>4.61</td>
<td>3.22</td>
<td>0.397b</td>
</tr>
<tr>
<td>(C) × (A)</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Mean</td>
<td>1.50</td>
<td>4.27</td>
<td>3.06</td>
<td>0.435</td>
</tr>
<tr>
<td>SEM</td>
<td>0.04</td>
<td>0.22</td>
<td>0.12</td>
<td>0.017</td>
</tr>
</tbody>
</table>

Means in the same column having different superscripts are significantly different (P<0.05). ns: not significance; * P< 0.05; **P<0.01; SEM standard error of mean; LCSGC leather chrome shaving gypsum composite. LCS leather chrome shaving

Figure 6. Changes in physical properties of formulated composites due to the interaction between leather chrome shaving proportion and specimens’ age.
Table (5) shows the differences in production costs among formulated LCSGC. Addition of LCS resulted in reduction in production costs. This reduction increased gradually by increasing LCS proportion to reach the maximum for LCSGC25. The cost savings rate was 1% for each 1% increase in LCS content.

![Figure 7. Correlations among bulk density values with compressive strength, flexural strength and thermal conductivity.](image)

Table 5. Production cost of formulated leather chrome shaving gypsum composites (LCSGC)

<table>
<thead>
<tr>
<th>Group</th>
<th>Gypsum</th>
<th>LCS</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quantity (kg)</td>
<td>Cost (L.E)</td>
<td>Quantity (kg)</td>
</tr>
<tr>
<td>LCSGC0</td>
<td>1000</td>
<td>650</td>
<td>0</td>
</tr>
<tr>
<td>LCSGC5</td>
<td>950</td>
<td>617.5</td>
<td>50</td>
</tr>
<tr>
<td>LCSGC10</td>
<td>900</td>
<td>585</td>
<td>100</td>
</tr>
<tr>
<td>LCSGC15</td>
<td>850</td>
<td>552.5</td>
<td>150</td>
</tr>
<tr>
<td>LCSGC20</td>
<td>800</td>
<td>520</td>
<td>200</td>
</tr>
<tr>
<td>LCSGC25</td>
<td>750</td>
<td>487.5</td>
<td>250</td>
</tr>
</tbody>
</table>

*Reduction percentage calculated based on the cost of LCSG0

DISCUSSION

Based on the present data, the chemical properties of LCS were similar to those of tanned leather (Sethuraman et al., 2013; Putshaka et al., 2015 and Abebaw and Abate, 2018). After getting rid of some organic substances such as fats and globular proteins during pre-tanning steps (BASF, 2007 and Dutta, 2008), LCS turned into a collagenous material having the expectedly obtained moisture, ash, chromium content and pH value.

Though, the acidity effect of LCS on gypsum setting is unknown, the bonding between gypsum crystals and LCS was strong as shown in Figure (5). After getting rid of some organic substances such as fats and globular proteins during pre-tanning steps (BASF, 2007 and Dutta, 2008), LCS turned into a collagenous material having the expectedly obtained moisture, ash, chromium content and pH value.

The naturally low bulk density of LCS caused decrease in the final bulk density of the formulated LCSGCs depending on the proportion of LCS in the

From the physical point of view, LCS can absorb nearly twice its weight of water in the first three minutes of soaking (Figure 4). That explained why the need for water increased with increasing LCS proportion in the composite (Table 2). Also, water might help gypsum particle to stick better on the collagen fiber due to the high absorbability of LCS and the smoothness of its surfaces. However, LCS loses absorbent water gradually until it is completely lost within 24 hours (Figure 4), which may improve the reaction conditions of gypsum by absorbing excessive water in LCS particles during first 30 minutes until completing the final setting (Li and Ren, 2011).

Moreover, the low bulk density of LCS has (0.1027 gm/cm³) was in agreement with the findings of Rao et al. (2002). It is even lower than that of tanned leathers which ranged between 0.59 and 0.67 gm/cm³ (Nasr et al., 2017). That was probably due to its irregular shapes and dimensions (Figure 2), as well as the presence of internal air gaps among collagen fibers (Figure 3).
composite. Such decrease in density plays an important role in altering the characteristics of the produced LCGSCs as indicated from the correlation between density and other physical properties (Figure 7).

The decrease in compressive strength, flexural strength and heat conductivity by increasing LCS proportion in the composite were because of the extra porosity induced by more LCS fibers and the nature of LCS porous. Adding different types of fibers when formulating composite including leather wastes showed the same trend (Lakrafli et al., 2012; Abuh and Umoh, 2015; Reddy et al., 2016; Zhua Cong et al., 2018 and Selamat et al., 2019).

Although the effects were insignificant (Table 4), specimen age brought about an improvement in the physical properties of LCGSCs. By time, water is lost by evaporation and the gaps within LCGSC composites become full of air instead of water, which lead to decrease in the values of bulk density and thermal conductivity. On the other hand, the values of compressive and flexural strengths were improved due to increased gypsum hardness (Li and Ren, 2011).

The highly significant interaction effect between LCS proportions and specimen age on characteristics of LCGSCCs was beneficial. The strength of LCGSC composites improved by time pass and by lowering LCS contents in gypsum composites, but the opposite trend was noticed for heat insulation property. Therefore, the gypsum composite LCGSC0 was the strongest but the lowest for heat insulation. Also, LCGSC25, which contained the highest LCS proportion, was the weakest but the highest for heat insulation. Consequently, to reach a compromise LCGSC5 and LCGSC10 composites may improve the thermal insulation properties with a marginal saving of about 5% and 10% in the production costs, respectively (Table 5).

CONCLUSION

The present study indicated that the utilization of chrome shaving wastes in the construction field will enhance the sustainability in leather tanning sector while achieving distinctive environmental and economic benefits. Adding leather chrome shaving when formulating gypsum composite enables its use as a construction decoration material, increases the void gaps among gypsum particles, enhances collecting crystal needles of gypsum on added fibers and more important enhances its utilization as thermal insulator of high durability. Adding 5-10% leather chrome shaving should improve heat insulation 12 - 25% but decreases the strengths 15 - 25%, while lowering the production cost 5 -10%.

Consequently, using chrome tanned leather wastes as insulation material not only presents a good solution to save energy but also resolve the problems of handling leather industry wastes.

REFERENCES

Lakrafli, H., S. Taheri, A. Albizane and M.E. El Otmani, 2012. Effect of wet blue chrome shaving and buffing dust of leather industry on the
استخدام مخلف سلالة الكرم في إنتاج ألواح الجبس لتحقيق الاستدامة

أحمد إبراهيم نصر 1, 2, هيثم إبراهيم نصر مرسى 3

1 قسم إنتاج وتكنولوجيا الصوف، شعبة الإنتاج الحيويي والدواجن، مركز بحوث الصحراء، مصر, 2 قسم الهندسة الزراعية والنظم الحيوية، كلية الزراعة، جامعة الإسكندرية, مصر

ينظر إليه جدًا، أجواء المزارع تكون ثانوياً للمزارع الرياضية، وهو ما يوفر للاستخدامات الزراعية قدمية تقنيات صناعية الدباغة الجلود، فهذا كله يساهم في تحسين الإركادات الاقتصادية للحلول الزراعية. ويؤدي استخدام الجلود ومخلفاتها إلى عمليات التصنيع إلى ضمان المزيد من الدخل للمزارع إنكوست تقليد المفصلة التي تتلاقى أثناء إنتاج الجلود.

لقد تم استخدام مخلف سلالة الكرم حوالي 3 مليارات طن سنويًا وتحتوي على إنتاج الكرم الثلاثية. إذ فإن تدور مخلف سلالة الكرم يعتبر وصلب لجودة التفاوت البيئي والاقتصادية الناشئة عن دباغة الجلود. وفي هذا الصدد استهدفت هذه الدراسة الاستكشافية من هذا المخلف بنسب متفاوتة (10%, 0%, 20%, 25%) في تصميم ألواح الجبس وتحديد خصائصه الفيزيائية. حيث تم تقدير رقم الاستدامة (Rf) وكميات الرطوبة والرطوبة والرطوبة الماء في مخلف السلاسل، علوا على تقدير الكفاءة الفُضائية وقوعة الانضاج والانضاج والمتصاصي الحراري، والفحص المجهري الإلكتروني لعينات ألوح الجبسيسد من التجربة. وقد بُنيت النتيجة ووجد تجاس وتحما جيدين بين التفاوت سلالة الكرم في جبس من خلال جرعة المجهري باكتروكروما وبدأت الرطوبة في اختناص الكفاءة معنويًا وكذلك اختناص تفاوت وقوعة الانضاج وقوعة الانضاج والمتصاصي الحراري.

كما أشارت النتائج إلى صلاصة استخدام هذا المخلف في صناعة الألوح الجبسيسة بسبب تجاونها في التوزيع وتلاجها مع الجبسيسة. وذلك فإن عمل ألوح الجبسيس تحتوي على مخلوط سلاسلة الكرم ممتازة الاستخدام كمادة فائقة في صناعة الألوح الجبسيسة على ملائم لزيادة العزل الحراري علاوة على تقليل الكفاءة الإنتاجية.