GENETIC AND ENVIRONMENTAL ESTIMATES FOR MILKING-ABILITY TRAITS IN HOLSTEIN CATTLE UNDER EGYPTIAN CIRCUMSTANCES

Faid-Allah E., E. Ghoneim, and M. Al-Khomri

Department of Animal Production, Faculty of Agriculture, Menoufia University, Egypt

E-mail: ifaidallah@agr.menofia.edu.eg

Submitted: 12/12/2023; Accepted: 18/2/2024; Published: 19/3/2024

SUMMARY

The study was conducted to investigate genetic and environmental factors affecting, and estimating genetic parameters, for milk production and milking-ability traits of Holstein cattle. The data obtained from six herds from a commercial farm called Dina for agriculture investment, located in Cairo-Alex. desert road (80 Km) from Cairo, Menoufia, Egypt. It included 3881 cows as progenies of 3321 dams and 261 sires in 6 herds that represented the period from 2007 to 2014. Studied Traits are milk production trait 305-days milk yield (305-dMY), and milking-ability traits like average flow rate (kg/min), peak flow rate (kg/min) and milking duration (min) for cows. First, Age at First Calving (AFC) mean was 24.8±2.3 month. The means (CV%) of milk production and milking-ability traits as 305-dMY, AFR, PF, and MD were 9399±1767 kg, (18.8%), 2.21±0.78 kg/min, (35%), 3.93±1 kg/min, (25%), and 4.09±1.29 min, (32%), respectively. Sire, dam, herd, parity, year, and season of calving had significant effects on studied traits. Heritability estimates were 0.27 ±0.061, 0.20 ±0.013, 0.07 ±0.002, and 0.09 ±0.001 for 305-dMY, AFR, PF, and MD, respectively. Estimates of rC and rP among studied traits were positive. Moderate estimates of heritability and positive genetic correlation among certain studied traits suggested that genetic improvement would be achieved via selection of appropriate breeding program.

Keywords: Genetic Parameters, Milk Production, Milking-ability, Holstein Cattle

INTRODUCTION

Cow’s Milking-ability traits are becoming more important for dairy producers all over world to reduce working time, minimize the total milking time, which would result in increasing welfare of cows in the whole herd, without affecting the total yield production (Samaré et al., 2011). Milking-ability traits consist of milk duration, peak flow rate and average flow rate, as well as a division of the milking phase into time for increasing flow rate, time for peak flow rate and time for reduced flow rate (Lee and Choudhary, 2006).

Genetic selection for the milk yield in dairy cattle has been mostly based on the basis of 305-day milk yield (Bilal and Khan, 2009).

Increasing milking speed results in reducing milking working time, which leads to decrease the cost of labor and operating energy. Also, reduce use of milking equipment (Lee and Choudhary, 2006; Gray et al., 2012, and Vosman et al., 2014).

Profitability of milk production depends on the cow’s milking efficiency, that is affected by many factors, especially milking frequency, milk yield, and milking speed (Aerts et al., 2022).

This study was conducted to investigate genetic and environmental factors affecting milk production and to estimate genetic parameters for milking-ability traits of Holstein cattle under Egyptian conditions.

MATERIALS AND METHODS

This study was conducted following the guidelines set by Menoufia University for the ethical treatment of animals in scientific research. The approval of Ethics Committee, The Institutional Animal Care and Use Committee (IACUC), Menoufia Univ. Ref. № (MUFAG/F/AP/5/23).

The data were collected from six herds at Dina farm, a commercial farm specializing in agriculture investment, located in the Cairo-Alex, desert road approximately 80 kilometers away from Cairo, Egypt. The dataset consists of information on 3,881 cows, which are the offspring of 3,321 dams and 261 sires across the six herds. The data covers the period from 2007 to 2014. Various factors were considered, including the sire and dam as random factors, the herd (1 to 6), parity (1 to 5), year of calving (2007 to 2014), and season of calving (summer: June 22nd to September 21st; autumn: September 22nd to December 21st; winter: December 22nd to March 21st; spring: March 22nd to June 21st). Age at first calving was used as a co-variate.

Management and feeding system:

The subject animals were of the American Holstein cattle breed and were kept in both shaded and open yards. They were grouped based on factors such as daily milk yield per cow, and lactation period. The heifers, specifically, are artificially inseminated using imported frozen semen from American Holstein bulls. This process begins when the heifers reach 12 months of age and weigh 350 kg, with a height of 125 cm. Pregnancy is confirmed through rectal palpation 35 days after the insemination process.
(DC305) were used for computer-recording system and were fed ad-lib on TMR system all year round, as recommended by N.R.C (NRC, 2001). Milking cows are fed according to their production and the days in milk, where the milking rations are divided into three rations of fresh, high milking and low milking yield. The fresh ration fed to the cow from zero days in milk to 25 days in milk, then cows were fed high milking ration until days in milk increases and the average daily milk production decreases, to less than 20 kg of milk per day, and then they were fed on a low ration to dry off.

These rations are formulated from corn silage, alfalfa hay, soya bean meal, corn grains, wheat bran, corn gluten feed, protected fat and mixed from vitamins and minerals.

The cows were milked three times daily by Delaval parlors according to the milking order with electronic chipset. Fresh cows enter the parlor in the 1st group, 1st parity in 2nd group, and from 2nd parity and above in 3rd group, and the low production in 4th group.

Studied traits:

Studied traits are automatically measured during milking, using automatic milking, and recording systems. Milk production trait include 305-days milk yield (305-dMY), and Milking-ability traits include:

1. Average flow rate, AFR (kg/min) was milk harvested until machine stripping divided by cumulative time (Petersen et al., 1986).
2. Peak flow rate, PF (kg/min) was maximum milk harvested during a one min interval (Petersen et al., 1986).
3. Milking duration, MD (min) was the actual time taken to milk out a cow as a time span between time any teat started giving milk until last teat stopped giving milk (Gade et al., 2006).

Statistical model:

Factors affecting studied traits were analyzed by general linear model (GLM) with Duncan test at \(\alpha = 0.05 \) using SAS computer program (SAS, 2002) as the following model:

\[
Y_{ijklmno} = \mu + S_i + D_j + p_k + t_o + h_n + e_{ijklmno}
\]

where: \(Y_{ijklmno} \) = The individual observation; \(\mu \) = Overall mean; \(S_i \) = Random effect of \(i^{th} \) sire, \(i=1:261 \); \(D_j \) = Random effect of \(j^{th} \) dam, \(j=1:3321 \); \(p_k \) = Fixed effect of \(k^{th} \) parity of cow, \(k=1:5 \); \(t_o \) = Fixed effect of \(o^{th} \) year of calving, \(o=1:8 \); \(o_{im} \) = Fixed effect of \(m^{th} \) season of calving, \(m=1:4 \) (winter=1, spring=2, summer=3, autumn=4); \(h_n \) = Fixed effect of \(n^{th} \) herd, \(n=1...6 \); and \(e_{ijklmno} \) = Error term NID (0, \(\sigma^2 \)).

Genetic parameters:

Genetic parameters were conducted by derivative-free REML with a simplex algorithm using the Multi-Trait Derivative-Free Rest. Max. Likelihood that abbreviate as MTDFREML (Boldman et al., 1995). Model in matrices notation was as follow:

\[
Y = Xb + Za + e
\]

where: \(Y \) = Vector of observations (milk production and milking-ability traits); \(b \) = Vector of fixed effects (herd, parity, calving year, calving season, and AFC as a covariate); \(a \) = Vector of random animal additive genetic effects; \(X, Z \) = Known incidence matrices relating observations to the respective traits and \(e \) = Vector of residual effects (0, \(\sigma^2 \)).

RESULTS AND DISCUSSION

Statistical description:

Table (1) displays the mean, standard deviation (SD) and coefficient of variability (CV%) of 305-day milk yield was 9399 ±1767 kg, (18.8%) and it was ranged between 3370 and 14440 kg.

The mean ±SD (CV%) of 305-dMY for Holstein cows were 4295 (19.7%), 10847 ±2206 Kg (20%), 9038 (13.1%), 2737 ±1044 Kg (25.6%), 8455.4 ±1555.1 (18.2%) and, 7208.72 ±1753.6 kg (24.33%) in Egypt as stated by (Ashmawy and Khalil, 1990, Boujenane and Hilal, 2012) and Khalefa, 2010, Hammoud, 2013 ±1044 Kg (25.6%).

<table>
<thead>
<tr>
<th>Traits</th>
<th>Mean</th>
<th>SD</th>
<th>Max</th>
<th>Min</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Yield at 305d, 305-dMY, kg</td>
<td>9399</td>
<td>1767</td>
<td>14440</td>
<td>3370</td>
<td>18.8</td>
</tr>
<tr>
<td>Average flow rate, AFR, kg/min.</td>
<td>2.21</td>
<td>0.78</td>
<td>7.69</td>
<td>0.45</td>
<td>35</td>
</tr>
<tr>
<td>Peak flow rate, PF, kg/min</td>
<td>3.93</td>
<td>1.00</td>
<td>8.53</td>
<td>2.00</td>
<td>25</td>
</tr>
<tr>
<td>Milking durations, MD, min.</td>
<td>4.09</td>
<td>1.29</td>
<td>9.25</td>
<td>0.67</td>
<td>32</td>
</tr>
</tbody>
</table>

SD=Standard deviation, Max=Maximum, Min=Minimum, CV = Coefficient of variation

The age of first calving (AFC) for cows under study was 24.8±2.3 (9.2%) month. The mean of AFC for Holstein cows differs from 31.8 ±0.1(SE) month (Hammoud et al., 2010) to 27.1 ±2.4 month (8.8%) (Saleem and Hammoud, 2016a) in Egypt. However, the age of first calving (AFC) for cows under study was 24.8±2.3 (9.2%) month. The mean of AFC in Holstein cattle raised in outside Egypt differs from 39.1±1.5 month (29.4%) (Boujenane and Hilal, 2012) to 24.18 ±1.59 month (Marestone et al., 2013).

The effective management strategy implemented
in this specific dairy cattle herd is evident from the low AFC achieved. The exceptional level of management enables the young heifers to attain the appropriate body weight for breeding at an earlier stage, consequently resulting in a reduced AFC.

Table (1) displays the mean (CV%) for milking-ability traits such as average flow rate (AFR), Peak flow rate (PF), and milking durations (MD). The values for AFR, were 2.21 ±0.78 kg/min (35%), for peak flow rate are 3.93 ±1 kg/min (25%), and for MD are 4.09 ±1.29 min (32%).

In Swedish Holstein cows, MD were 4.58±1.61 min, and ranged between 1.03 to 16.54 min for 1st parity, and 4.97 ±1.82 min, and ranged between 0.69 to 19.90 min for 2nd and 3rd parity; AFR were 3.65 ±1.08 kg/min, and ranged between 0.48 to 8.46 kg/min for 1st parity, and 4.14 ±1.16 kg/min, and ranged between 0.30 to 8.50 kg/min for 2nd and 3rd parity; PF were 5.32 ±1.35 kg/min, and ranged between 0.72 to 10.98 kg/min for 1st parity, and 5.93 ±1.47 kg/min, and ranged between 0.60 to 11.00 kg/min for 2nd and 3rd parity; and milk yield per time were 12.1 ±3.19 kg, and ranged between 1.04 to 34.16 kg for 1st parity, and 14.92 ±4.48 kg, and ranged between 1.0 to 34.99 Kg for 2nd and 3rd parity (Carlström et al., 2013). In Jersey cattle, MD were 9.94 ±2.23 min, and ranged between 5.79 to 13.58 min; AFR were 1.66 ±36 kg/min and ranged between 1.04 to 2.64 kg/min; PF were 2.49 ±0.57 kg/min and ranged between 1.04 to 2.64 kg/min; and milk yield per day were 22.23 ±8.02 kg and ranged between 10.4 to 38.2 Kg (Bobić et al., 2020).

The means of AFR kg/min for Holstein cows differs from 2.3 ±0.61 (Lee and Choudhary, 2006) and 2.59 ±0.91 (Aerts et al., 2022), respectively to 3.65 ±1.08 in 1st parity (Gåde et al., 2007) and 4.14 ±1.16 in >1st parity (Carlström et al., 2013). Many investigators stated that AFR was above 2.0 kg/min (Gåde et al., 2007; Rahmatalla et al., 2011; Lučić et al., 2013 and Laureano et al., 2014). The mean of AFR is 2.21 kg/min in Germany Holstein cattle (Rahmatalla et al., 2011). Mean for peak flow rate noted in this study was 3.93 ±1.0 kg/m (25%) like 3.8 ±1.2 kg/m in Italian Holstein (Sandrucci et al., 2007).

Higher peak flow rate values (5.932 ±1.47 kg/m) were noted in Swedish Holstein cattle (Carlström et al., 2013). slightly lower PF rate (2.49 ±0.57 kg/m) in jersey cattle (Bobić et al., 2020). Milk duration in the current study was 4.09±1.29 min. and this value lower than many investigators results which ranged from 5.71 to 12.9 minutes (Povinelli et al., 2003; Carlström et al., 2013; and Bobić et al., 2020).

According to these results we can conclude that milking abilities play a crucial role in dairy management as it aims to maximize production capacity and ensure high-quality milk. It is not merely a process of extracting milk from the cow’s teats; rather, it triggers various physiological mechanisms within the lactating cow’s body. These mechanisms have a significant impact on the regulation of production capacity, milk composition, feed intake, and animal behaviors. Therefore, the milking technique and routines offer an opportunity to interact with the cow’s biology and achieve optimal yield and superior milk quality. The duration of milking holds significant economic importance as it directly impacts the overall milking time of cows in the milking parlor and any prolongation in milking time adversely affects production costs by increasing labor time. The variation in Milking-ability traits across assorted studies may be attributed to the distinct designs of milking parlors, herd management practices, and the utilization of enhanced breeds in different farms. Understanding animal behaviors, social interactions, and the psychological needs of animals is unquestionably crucial for achieving optimal and productive milk production.

Genetic and Environmental factors:

Table (2) demonstrates that the milk production and milking-ability traits were significantly influenced by sires and dams as a random factor (P≤0.05). These results agree with (Hamed and Soliman, 1994; Hammoud and Salem, 2013, and Faid-Allah, 2015) for 305-dMY, and for milking-ability traits in this study (Petersen et al., 1986, and Gade et al., 2006).

Table 2. Genetic factors affect milk production and milking-ability traits in Holstein cows.

<table>
<thead>
<tr>
<th>Genetic factors</th>
<th>Milk production & Milking-ability traits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sire (n=261)</td>
<td>305-dMY</td>
</tr>
<tr>
<td></td>
<td>**</td>
</tr>
<tr>
<td>Dam (n=3321)</td>
<td>*</td>
</tr>
</tbody>
</table>

305-dMY= Milk yield at 305 days; AFR= Average flow rates; MD = Milking durations; PF= Peak flow rate.

* Significant differences (P ≤0.05), ** Highly significant differences (P ≤0.01).

This indicates the presence of heritable differences in the studied traits, and the assessments of heritable parameters were found to be extremely sensitive and capable of facilitating selection for heritable improvements in the studied traits.

The inclusion of parity as a fixed effect had a remarkably significant influence (P≤0.01) on 305-day milk yield and a significant impact (P≤0.05) on average flow rate, peak milk flow rate, and milk duration (Table 3).
Table (3) displays a highly significant on 305-dMY and this result is in accordance with (Attil, 2000); (Tadesse et al., 2010; (Usman et al., 2012; Chegini et al., 2015; Al-Samarai et al., 2015; Faid-Allah, 2015; Mikó et al., 2016; Salem and Hammoud, 2016a, and Koc, 2017). Also, parity has a significant effect on AFR, PF and MD this result is in accordance with (Petersen et al., 1986; Sandrucci et al., 2007; Gáde et al., 2007; Guler et al., 2009; Antalík and Strapák, 2011, and Berry et al., 2013).

Parity is one of the most influential factors affecting productive and reproductive traits because increasing and development of the size of the udder, increasing body size and body weight over and enlargement of the digestive system and the mammary gland that of the first lactation animal (Ruiz-Sánchez et al., 2007; and Badri et al., 2011).

Table (3) reveals that in the first and second parity exhibited the highest means of 305-day milk yield in general. However, as the parity advanced, this measure gradually decreased, reaching its lowest level in the fourth and fifth parities. This decline can be attributed to the fact that highly productive cows are more prone to mastitis and are overly sensitive to changes in environmental factors. The trend of AFR, PF, and MD showed a significant decrease from the first to the fifth parity.

Table 3. Environmental factors affecting milk production and milking-ability traits in Holstein cows

<table>
<thead>
<tr>
<th>Environmental factors</th>
<th>305-dMY</th>
<th>Milk production & milking-ability traits</th>
<th>Mean</th>
<th>Sd</th>
<th>AFR</th>
<th>Mean</th>
<th>Sd</th>
<th>PF</th>
<th>Mean</th>
<th>Sd</th>
<th>MD</th>
<th>Mean</th>
<th>Sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parity</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10710.8a</td>
<td>1933.1</td>
<td>2.0a</td>
<td>0.672</td>
<td>3.7ab</td>
<td>0.888</td>
<td>3.7b</td>
<td>1.160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9520.6b</td>
<td>1736.2</td>
<td>1.7b</td>
<td>0.571</td>
<td>3.7ab</td>
<td>0.879</td>
<td>4.0c</td>
<td>1.203</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9204.1c</td>
<td>1730.4</td>
<td>1.6c</td>
<td>0.549</td>
<td>3.6b</td>
<td>0.864</td>
<td>4.2b</td>
<td>1.304</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8729.8d</td>
<td>1624.8</td>
<td>1.6d</td>
<td>0.538</td>
<td>3.6b</td>
<td>0.891</td>
<td>4.3ab</td>
<td>1.280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥5</td>
<td>8164.2e</td>
<td>1534.9</td>
<td>1.5e</td>
<td>0.509</td>
<td>3.4c</td>
<td>0.816</td>
<td>4.4c</td>
<td>1.394</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year of calving</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>8776.6a</td>
<td>1584.0</td>
<td>1.8d</td>
<td>0.470</td>
<td>3.2b</td>
<td>0.768</td>
<td>5.0a</td>
<td>1.568</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>7700.7a</td>
<td>1404.3</td>
<td>1.4d</td>
<td>0.452</td>
<td>2.7a</td>
<td>0.641</td>
<td>4.0b</td>
<td>1.203</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>8714.2a</td>
<td>1638.3</td>
<td>1.5d</td>
<td>0.515</td>
<td>3.3b</td>
<td>0.792</td>
<td>4.5b</td>
<td>1.397</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>8987.9a</td>
<td>1672.8</td>
<td>1.5ab</td>
<td>0.504</td>
<td>3.5b</td>
<td>0.866</td>
<td>4.2b</td>
<td>1.250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>9066.1a</td>
<td>1704.4</td>
<td>1.6b</td>
<td>0.543</td>
<td>3.6b</td>
<td>0.864</td>
<td>4.2ab</td>
<td>1.331</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>9532.2a</td>
<td>1774.1</td>
<td>1.6b</td>
<td>0.518</td>
<td>3.6b</td>
<td>0.891</td>
<td>4.1ab</td>
<td>1.220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>9963.6a</td>
<td>1854.4</td>
<td>2.0a</td>
<td>0.672</td>
<td>3.8b</td>
<td>0.941</td>
<td>3.7bc</td>
<td>1.101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>9712.3ab</td>
<td>1807.7</td>
<td>2.1b</td>
<td>0.706</td>
<td>3.4bc</td>
<td>0.842</td>
<td>3.6a</td>
<td>1.075</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herd</td>
<td></td>
</tr>
<tr>
<td>№ 3</td>
<td>9278.0a</td>
<td>1674.5</td>
<td>1.8b</td>
<td>0.600</td>
<td>3.8b</td>
<td>0.912</td>
<td>3.9c</td>
<td>1.223</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>№ 6</td>
<td>9057.6a</td>
<td>1651.7</td>
<td>1.5d</td>
<td>0.504</td>
<td>3.8a</td>
<td>0.901</td>
<td>3.9b</td>
<td>1.173</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>№ 9</td>
<td>9869.4a</td>
<td>1855.4</td>
<td>1.5b</td>
<td>0.515</td>
<td>3.6b</td>
<td>0.864</td>
<td>4.7b</td>
<td>1.450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>№ 10</td>
<td>9443.6a</td>
<td>1751.6</td>
<td>1.6a</td>
<td>0.605</td>
<td>3.3b</td>
<td>0.817</td>
<td>3.3a</td>
<td>0.982</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>№ 11</td>
<td>8843.4a</td>
<td>1662.6</td>
<td>1.7c</td>
<td>0.577</td>
<td>3.5b</td>
<td>0.840</td>
<td>4.1b</td>
<td>1.239</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>№ 12</td>
<td>10042.9a</td>
<td>1860.2</td>
<td>2.1c</td>
<td>0.706</td>
<td>3.8c</td>
<td>0.940</td>
<td>3.7d</td>
<td>1.101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Season of Calving</td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>9346.1bc</td>
<td>1686.8</td>
<td>1.7b</td>
<td>0.571</td>
<td>3.6bc</td>
<td>0.864</td>
<td>4.0b</td>
<td>1.254</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>9213.5bc</td>
<td>1680.2</td>
<td>1.6c</td>
<td>0.538</td>
<td>3.5b</td>
<td>0.831</td>
<td>3.9b</td>
<td>1.170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>9367.8bc</td>
<td>1761.1</td>
<td>1.7b</td>
<td>0.580</td>
<td>3.6bc</td>
<td>0.864</td>
<td>4.1a</td>
<td>1.293</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autumn</td>
<td>9563.8bc</td>
<td>1780.0</td>
<td>1.8b</td>
<td>0.605</td>
<td>3.7a</td>
<td>0.916</td>
<td>4.2a</td>
<td>1.250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Means within column classification followed by different superscript are different significantly (P<0.05). 305-dMY= Milk yield at 305 days; AFR= Average flow rates; MD= Milk durations; PF= Peak flow rate. * Significant differences (P<0.05). ** Highly significant differences (P<0.01).

Table (3) illustrates the noteworthy impact (P≤0.01) of the calving year on the examined factors in Holstein cows. It is observed that the cows exhibit variations in their milk production and milking-ability characteristics from year to year. Similar results for all studied traits stated by (Al-Samarai et al., 2015, Faid-Allah, 2015; Awady et al., 2016; Koc, 2017; and Hadad, 2020) for milk production traits and in accordance with for milking-ability traits for Holstein dairy cattle in South African (Tshilale,
2017).

Furthermore, the cows experienced the highest 305-day milk yield values in the years 2013-2014 compared to other years. This could be attributed to effective management decisions made during the selection process. The year of calving plays a significant role in these changes, influenced by annual variations in temperature, alterations in management systems, and the availability of feed resources.

Table (3) indicates that the herd had a remarkably significant impact (P≤0.01) on 305-day milk yield and AFC. Furthermore, the herd had a significant influence (P≤0.05) on peak milk flow and milk duration.

Comparable results had noticed via many authors and commented that one of the factors affecting Milking-ability traits were resulting from herd management and it can be changes from farm to another farm (Mohsen et al., 1999; Al-Timimy, 2003; Rehman et al., 2008; Sudhakar et al., 2013, and Petrovic et al., 2015). Furthermore, each herd has its own feeding system significant effects were noted on milking characteristics including average milk flow and milking duration (Blake and McDaniel, 1978; Thomas et al., 1991; Mohsen et al., 1999; McCarthy et al., 2007, and Mijic et al., 2007).

Table (3) displays that the effect of season of calving had a significant effect (P≤0.05) on 305-dMY, PF and MD; and a highly significant effect (P≤0.01) on AFR. Milk production traits affected by calving season (M’hamdi et al., 2012; Sahin et al., 2012; Bouallegue et al., 2013; Hammoud, and Salem, 2013; Froidmont et al., 2013; Kaygiz, 2013; Rios-Urtra et al., 2013; Bernabucci et al., 2014; Torshizi, 2016; Hassan et al., 2017; Cheruiyot et al., 2020; and Badr et al., 2020) that agree with the study.

Milking-ability traits affected by calving season (Tançin et al., 2006, and M’hamdi et al., 2012) that agree with the study. But some authors mentioned that had no significant effect by season of calving on milking-traits (Aydin et al., 2008). Effect of calving season had significant effect on AFC (Faid-Allah, 2015, and Salem and Hammoud, 2016b) that agree with this study.

Dairy farmers employ various techniques to cool lactating cows in the summer, with the most prevalent method being the use of water spray and fans to facilitate evaporative cooling. Implementing suitable housing that aids in dissipating heat could potentially alleviate the severity of these issues (Osman et al., 2013).

Heritability Estimates:

Table (4) presented heritability estimates (h²), genetic (rG) and phenotypic (rP) correlation coefficients among various milk production and milking-ability traits. Heritability estimates for 305-dMY. PF and MD were 0.27±0.061, 0.20 ±0.013, 0.07 ±0.002, and 0.09 ±0.001, respectively.

<table>
<thead>
<tr>
<th>Traits</th>
<th>305-dMY</th>
<th>AFR</th>
<th>PF</th>
<th>MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFR</td>
<td>0.27±0.061</td>
<td>.334±0.116**</td>
<td>.225±0.099**</td>
<td>.110±0.102**</td>
</tr>
<tr>
<td>PF</td>
<td>.221**</td>
<td>.20±0.013</td>
<td>.585±0.124**</td>
<td>-.393±0.145**</td>
</tr>
<tr>
<td>MD</td>
<td>.179**</td>
<td>.640**</td>
<td>.07±0.002</td>
<td>.585±0.095**</td>
</tr>
<tr>
<td></td>
<td>.183**</td>
<td>.683**</td>
<td>.663**</td>
<td>.09±0.001</td>
</tr>
</tbody>
</table>

305-dMY= Milk yield at 305 days; AFR= Average flow rates; MD= Milk durations; PF= Peak flow rate.

These estimates are low to moderate and in accordance with most of the previous authors in Egypt for Holstein cows. Heritability estimates were 0.29, 0.42, 0.20, and 0.18 ±0.032 as stated by (Dadpasand et al., 2013, Hammoud and Salem, 2013, Kaygiz, 2013, and Faid-Allah, 2015), for 305-dMY.

In literature, heritability estimate for AFR were ranging from 0.21 to 0.41, 0.28 to 0.37, and 0.21 to 0.36 for 1st, 2nd, and above parities, respectively as stated by (Döndöhoff and Emmerling, 2008, and Carlström et al., 2014). Furthermore, heritability’s for PF were 0.55, 0.56, 0.40, 0.41, 0.11, 0.41, and 0.50 as stated by (Gäde et al., 2006; Gäde et al., 2007; Gray et al., 2011; Samoré et al., 2011; Gray et al., 2012, Carlström et al., 2014, and Pretto et al., 2014), respectively. moreover, heritability’s for MD were 0.18, 0.19, 0.17, 0.39, 0.38, 0.37, 0.23, and 0.11 as stated by (Moore et al., 1983, Pavinelli et al., 2003, Zwald et al., 2005, Gäde et al., 2006, Gäde et al., 2007, Aydin et al., 2008, Guler et al., 2009, and Gray et al., 2011), respectively. In previous studies, heritability ranging from 0.1 : 0.6 were estimated for Milking-ability traits (Zwald et al., 2005, Carlström et al., 2009, and Edwards et al., 2014).

Genetic and Phenotypic Correlation’s coefficients:

Table (4) illustrates genetic (rG) and phenotypic (rP) correlation coefficients for the studied traits. All the coefficients displayed positive values except rG between MD and AFR (-0.393 ±0.145). Table (4) shows a significant genetic correlation between 305-day milk yield and milking-ability traits. That in accordance with many authors working on Holstein cattle (Gäde et al., 2006, Gäde et al., 2007, Guler et
The positive genetic and phenotypic correlations between milk yield and rates of flow and milking times were observed (Petersen et al., 1986). The genetic correlations among milk yield and average milk flow, maximum milk flow, and milking time are 0.51, 0.44, and -0.23, respectively. (Gäde et al., 2006)

The genetic correlation between milk yield and average milk flow showed a positive relationship (0.334*). Similar findings were stated by (Miller et al., 1976) in terms of genetic correlations.

The genetic and phenotypic correlations between MD The variations in parameters for measuring milk flow rate, as reported by different authors, could be attributed partly to variations in definitions and recording methods of the trait, as well as breed disparities (Williams et al., 1984). Genetic correlations (rg) between AFR and PF ranged from 0.89 to 0.91 (Gäde et al., 2006, and Gäde et al., 2007). Negative genetic correlations between AFR and MD have been stated in the literature (Gäde et al., 2006, Gäde et al., 2007, and Erdem et al., 2010).

A moderate genetic correlation between the AFR and MD was obtained in the Italian Holstein cattle by (Samoré et al., 2011)

Coefficients of genetic and phenotypic correlations (±S.E) among Milking-ability traits were 0.79 ±0.09, 0.86 ±0.01 for AFR and PF; -0.35 ±0.23, -30 ±0.03 for AFR and MD; and -0.46 ±0.18, -0.32 ±0.03 for PF and AFR, respectively (Tshilate, 2017).

CONCLUSION

Estimate genetic parameters and association of milking-ability and milk production traits in Egyptian herds of dairy cows suggested that the potential use of milking-ability traits in genetic selection to improve profitability of dairy cattle, although its association with milking-ability and hygiene traits warrants further research. Based on the estimates of heritability’s and the positive genetic correlations observed for some of studied traits, it is anticipated that a selection breeding program would lead to significant genetic improvement in selected breeds of milk cows.

ACKNOWLEDGMENTS

The authors thanks Eng. Tarik Attia (the livestock director) and Dina farms team of the Dina commercial farm for agriculture investment, to its collaborate and make available the databases required to conduct the research.

REFERENCES

Bilal, G., and M. S. Khan, 2009. Use of test-day milk

Hammad, M., S. El-Zarkouny and E. Oudah, 2010. Effect of sire, age at first calving, season and year
of calving and parity on reproductive performance of Friesian cows under semiarid conditions in Egypt. Archiva Zootechnica 13(1):60.

Rahmatalla, S.A., U. Müller, E.M. Strucken, M.

التقديرات الوراثية والبيئية لصفات القدرة على الحلب في أبقار الهولشتين تحت الظروف المصرية

اسلام فض الله عباس، الهمام محمد إسماعيل عيش، محمد عادل الخميس
قسم الإنتاج الحيوي، كلية الزراعة، جامعة المنوفية، مصر

تم إجراء الدراسة لتقدير تأثير العوامل الوراثية والبيئية وتقدير المقاييس الوراثية لصفات إنتاج اللبن والقدرة على الحلب لأبقار الهولشتين. تم الحصول على البيانات من ستة قطعان من مزرعة تجارية (دينا للإستثمار الزراعي) الموجودة في طريق القاهرة-الإسكندرية الصحراوي (80 كم من القاهرة، محافظة المنوفية، مصر) في عام 2007 إلى 2014. ح lượt الدراسة، تم قياس عدة ميزات لصفات العائداتtel، والقدرة على الحلب، مثل متوسط معدل التدفق (كجم/ دقيقة)، وزروة التدفق (كجم/ دقيقة) ومدة الحليب (دقيقة). كانت قيم المتوسط الحسابي والانحراف المعياري ومعامل الاختلاف (٪) لصفات اللبن والقدرة على الحليب كالآتي: 3.99 ± 1.09 كجمًا (23.8٪)، 2.21 ± 0.78 كجمًا (35٪)، 3.93 ± 1 كجمًا (25٪)، 4.09 ± 1.29 دقيقة (32٪) على التوالي. كان تأثير الآباء والأمهات والقطعان وسنوات وفصول الولادة تأثيرات معنوية على الصفات المدروسة. تم تقدير المكافئ الوراثي بنسبة 27.0 ± 0.061 و 0.20 ± 0.013 و 0.07 ± 0.002 و 0.09 ± 0.001 للصفات Yd.M. [AFR] و PF [MD] و [AFR] و 305-d.M. [Y] على التوالي. أظهرت تقديرات معايير الارتباط الوراثي والمنهجية بين الصفات المدروسة إتجاهًا إيجابياً، أشارت التقديرات المعتدلة للوراثة والارتباط الوراثي الإيجابي إلى بعض الصفات المدروسة إلى أن التحسين الوراثي سيتحقق عن طريق برامج الانتخاب الوراثي.