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SUMMARY 
 

This study aimed to estimate variance components for litter size (LS) and total litter weight at birth (TLW) in 

Sohagi sheep using Bayesian methods. Data were collected from 2003 to 2022 at the experimental farm of Sohag 

University, which included records from 1,464 ewes, the offspring of 51 sires and 325 dams, to assess the influence 

of various environmental factors on these traits. The average LS and TLW were 1.25 ± 0.01 lambs and 3.74 ± 0.03 

kg per ewe, respectively. To estimate the posterior means and standard deviations of genetic parameters for LS and 

TLW, univariate linear, univariate threshold, bivariate linear, and bivariate threshold linear models were employed 

using GIBBSF90+.  For LS, heritability estimates ranged from 0.10 (univariate linear model) to 0.21 (univariate 

threshold model), while repeatability ranged from 0.13 to 0.26, following a similar pattern. For TLW, heritability 

estimates varied from 0.04 (univariate linear model) to 0.07 (bivariate threshold linear model), with repeatability 

estimates also showing a similar trend, ranging from 0.10 and 0.13. The bivariate threshold linear model indicated 

a high genetic correlation of 0.98 and a phenotypic correlation of 0.94. Additionally, the bivariate linear model 

showed strong positive correlations, with genetic and phenotypic values of 0.99 and 0.87, respectively. For LS, 

Spearman rank correlations between breeding values obtained from four models demonstrated consistent animal 

rankings across different statistical approaches. Based on these findings, we propose a selection index that 

incorporates both LS and TLW traits to enhance genetic evaluation strategies in Sohagi sheep. 
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INTRODUCTION 
 

The Sohagi sheep is one of the prominent 

indigenous sheep breeds in Egypt, especially well-

adapted to the environmental conditions of Upper 

Egypt. These sheep are highly tolerant of heat stress, 

limited food availability, and extensive management 

systems (Elnahas and Elsaid, 2022). A key factor 

influencing their productivity and economic value is 

reproductive performance, particularly litter size and 

total litter weight at birth.Litter size, refers to the 

number of lambs of a ewe produces in a single 

lambing, and it significantly impacts the overall 

reproductive performance of the flock and making it an 

essential aspect of meat production. Similarly, total 

litter weight at birth, which is the combined weight of 

all lambs born in a single parturition, reflects the 

overall health and development potential growth of the 

newborns. A high litter size accompanied by 

appropriate birth weight increases survival rates, 

promotes efficient growth, and higher profitability for 

farmers (Ptáček et al., 2017, and Santos et al., 2023). 

Enhancing the reproductive efficiency and 

productivity of Sohagi sheep can be achieved through 

genetic selection and effective management practices. 

Community-based breeding programs have 

demonstrated success in improving reproductive traits 

and decreasing pre-weaning mortality (Habtegiorgis et 

al., 2022). Consequently, these indicators are crucial 

not only for evaluating flock performance but also for 

developing sustainable breeding programs aimed at 

enhancing local genetic resources. 

Litter size is considered a categorical trait that is 

measured on a discrete scale. This classification makes 

it more appropriate to treat it as a quasi-continuous or a 

threshold characteristic. When analyzed using linear 

models, the discrete and non-normally distributed 

nature of litter size is not adequately addressed, which 

can lead to less accurate results. Therefore, threshold 

models are generally more suitable to analyze 

categorical traits. Supporting this, Mekkawy et al. 

(2010) and Ziadi et al. (2024) recommended the use of 

threshold models for studying litter size in sheep. Their 

analyses, based on these models, produced higher 

heritability estimates compared to those obtained from 

linear models. However Moreno, (1993) and Ødegard 

et al. (2010) reported that threshold models can provide 

biased variance component estimates. 

Recent applications of Bayesian threshold models 

in sheep have demonstrated their effectiveness in 

estimating genetic parameters for litter size while 

accounting for environmental effects and the 

categorical structure of the data (Fathallah et al., 2016, 

and Ziadi et al., 2024). However, the genetic 
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improvement of reproductive performance can be 

further enhanced by leveraging information from 

genetically correlated traits such as total litter weight. 

Multivariate analyses, which integrate litter size with 

related continuous traits, can leverage these genetic 

correlations to improve the accuracy of breeding values 

estimates (Ziadi et al., 2024).To date, neither bivariate 

threshold linear models combining litter size and total 

litter weight, nor univariate threshold models, have 

been applied to the Sohagi sheep breed. Therefore, this 

study aims to estimate variance components using 

Bayesian univariate models and Bayesian threshold 

models for litter size and total litter weight at birth in 

Sohagi sheep. 
 

MATERIAL AND METHODS 
 

Farm location and management: 

This study was conducted in accordance with the 

guidelines of the Sohag Institutional Animal Care and 

Use Committee (Sohag-IACUC), with approval 

number 6-12-5/2025-01. The data were gathered from a 

Sohagi sheep flock maintained at the experimental farm 

of the Faculty of Agriculture, Sohag University, 

spanning the year from 2003 to 2022. The flock was 

managed under a breeding system designed to produce 

three lamb crops within a two-year cycle, with mating 

seasons scheduled for January, May, and September. 

During the winter months, the animals' diet consisted of 

green fodder (Trifolium alexandrinum) supplemented 

with concentrated feeds including soybeans and corn. 
 

Data and studied traits: 

This study evaluated two traits: litter size (LS) and 

total litter weight at birth (TLW), using a data set of 

1,464 ewe records from 51 sires and 325 dams.  
 

Statistical analysis: 
A common analytical framework was adopted for 

both traits, LS and TLW, using SAS (version 9.1, 

2003). The fixed effects that were tested included type 

of birth (T), ewe parity (P), season of birth (S), lambing 

year (L), and age of the ewe at lambing (Age as a 

covariate term). All two-way interactions among fixed 

effects were included; however non-significant 

interactions (P>0.05) were subsequently removed. The 

final models were: 

 

LSijklm=μ+Ti+Pj+Sk+Ll+b(Xijklm - X̄)+eijklm   (1) 

 

TLWijklm=μ+Ti+Pj+Sk+Ll+(S*L)kl+b(Xijklm- X̄+eijklm  

                                                                          (2) 

Where, Yijklm=observed litter size or total litter weight 

at birth trait; μ is the overall mean; Ti=Fixed effect of 

the ith type of birth (single, twins and triplet);Pj = Fixed 

effect of the jth parity of ewe (1, 2,..,5);Sk =Fixed effect 

of the kth season of birth (Winte, Summer, and 

Autumn);Ll= Fixed effect of the lth  lambing year (2003 

to 2022); S*L= interaction between season of birth and 

lambing year; b= linear partial regression coefficient of 

the studied trait on the age of ewe (x);  = the average 

of ewe age, and eijklm is the random residual error 

assuming to be NID (0,σ2 e). 

Four animal model variants were applied to analyze 

litter size (LS) and total litter weight at birth (TLW). A 

univariate linear model was applied to each trait 

separately, while a univariate threshold model was used 

to accommodate the categorical nature of LS. To 

estimate the genetic correlation between traits and to 

compare the genetic parameter estimates obtained from 

the univariate models, both a bivariate linear model 

(treating LS and TLW as continuous traits) and a 

bivariate threshold linear model (modeling LS as a 

categorical trait and TLW as a continuous trait) were 

implemented. The general form of the linear animal 

model used is as follows: 

y = Xβ + Za + Wp + e   (3) 

where y is the vector of observations or liabilities; X, Z, 

and W are incidence matrices relating observations to 

the fixed effects (β), random additive genetic effects 

(a), and permanent environmental effects (p), 

respectively. The random effects are assumed 

distributed as ~ )IpN(0,~),0( 22 paAaN   and 

residual errors )IeN(0,~ 2e a is the numerator 

relationship matrix and I is an identity matrix. 

All models were fitted using GIBBSF90+(Misztal 

et al., 2024). Each Markov chain was run for a total of 

100000 iterations; the first 20000 iterations were served 

as burn-in, and every 10th remaining draw was retained 

to thin the chain (lag=10). The convergence of the 

posterior samples was evaluated using Geweke’s z-

score diagnostic which tests the equality of early- and 

late-chain means (Geweke, 1992). 

The Spearman's rank correlation coefficients were 

calculated to evaluate the degree of similarity between 

the rankings of estimated breeding values (EBVs) 

obtained from four animal models using Bayesian 

analysis. The SAS program (version 9.1, 2003) was 

used to compute these coefficients of rank correlation. 
 

RESULTS AND DISCUSSION 
 

The analysis of variance for the fixed effects 

affecting the studied traits is presented in Table 1. The 

results revealed that, for the LS trait, only parity and 

lambing year had statistically significant effects 

(P<0.01), while type of birth, season of birth, ewe age, 

and the interaction showed no significant effects 

(P>0.05).Similarly, in the TLW trait, parity, season of 

birth and lambing year were significant factors 

(P<0.05)as was the interaction between season of birth 

and lambing year (P<0.05).However, birth type and 

ewe age remained non-significant (P>0.05). Recent 

studies have corroborated the significant influence of 

parity, lambing year, and season of birth on 

reproductive traits in sheep. Balogun et al. (2021) 

found that parity and lambing year significantly 

affected litter size in Yankasa sheep. 
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Table 1. Analysis of variance for litter size at birth (LS) and total litter weight at birth (TLW) in Sohagi sheep 

Source of variation 
LS TLW 

Df  MS Df MS 

Total 

Type of birth 

Parity 

Season of birth 

Lambing year 

Season of birth*Lambing year 

Age of ewe 

Residual  

1463 

2 

4 

2 

19 

 

1 

1435 

  

0.079NS 

0.672** 

0.580NS 

0.397** 

 

0.381NS 

0.22 

1463 

2 

4 

2 

19 

38 

1 

1397 

 

1.693NS 

5.317* 

5.993* 

3.588** 

2.484* 

5.138NS 

5.79 

C.V.% 35.63 33.65 
*= significant at 0.05, **= significant at 0.01, NS= non significant and C.V. = coefficient of variation.  
 

Table 2, displays the least square means and 

standard errors for litter size (LS) and total litter weight 

at birth (TLW) in Sohagi sheep. The average LS and 

TLW at birth were found to be 1.25 ± 0.01 lambs and 

3.74 ± 0.03 kg per ewe, respectively. Comparative 

studies by Doloksaribu et al. (2000) and Habtegiorgis 

et al. (2022) reported higher average values, with 

1.52 ± 0.04 for LS in Sumatra thin-tailed sheep and 

1.57 ± 0.02 for LS and 5.24±0.09 for TLW at birth in 

Doyogena sheep. These figures exceed the average 

observed in the current study. However, the current 

results are higher than those previously reported by 

Taye et al. (2010), who found average LS values of 

1.19 in Washera sheep. 

Ewes delivering triplets showed significantly higher 

LS and TLW, compared to those that delivered twins 

and singles. These results align with Gbangboche et al. 

(2006), which found that Karayaka and indigenous ewe 

breeds with multiple births had higher productivity than 

those with singlebirths. In terms of parity, both LS and 

TLW were lowest during the first and second parities, 

indicating lower reproductive efficiency in the early 

stages of ewe maturity. The highest LS and TLW 

values were observed in the fourth parity (1.38 ± 0.05 

and 4.18 ± 0.14 kg, respectively).This support the 

findings of Mandal et al. (2012), who noted that 

improved reproductive performance of Muzaffarnagari 

lambs with increasing parity up to a certain threshold.  

During the winter and summer months both LS and 

TLW were higher compared to autumn. This trend may 

be attributed to improved nutritional availability during 

these periods. These results are consistent with those of 

Habtegiorgis et al. (2022), who reported seasonal 

variations in reproductive traits among Doyogena 

sheep, noting better outcomes in cooler and moderately 

warm seasons. In contrast, results by Al-Dahl et al. 

(2022) indicated minimal seasonal effects on the 

Awassi sheep flock, emphasizing the role of 

management practices alongside environmental factors. 

There was significant variation in litter size (LS) 

and total litter weight at birth (TLW) across different 

lambing years. The highest values were recorded in 

2007, with LS and TLW averaging 1.53 ± 0.08 and 

4.56 ± 0.24 kg, respectively. In contrast, the lowest LS 

was observed in 2010 (1.10 ± 0.07), while the lowest 

TLW was recorded in 2022 (3.19 ± 0.33 kg).  

Year-to-year fluctuations in performance are often 

attributed to changes in environmental conditions, 

nutritional status, and management practices that 

influence both dam and lamb. These findings are 

consistent with those of Boujenane et al. (2013) 

demonstrated a significant effect of lambing year on LS 

in D’man ewes, attributing this variation to 

management and environmental factors.  

The posterior means and standard deviations of the 

genetic parameters for LS and TLW at birth were 

evaluated using different models, including univariate 

linear model, univariate threshold model, bivariate 

linear model, and bivariate threshold linear model. The 

results are presented in Table 3. For LS, the univariate 

threshold model consistently produced higher estimates 

for additive genetic, permanent environmental, and 

residual variances (0.092 ± 0.037, 0.020 ± 0.016, and 

0.317 ± 0.043, respectively).In contrast, the univariate 

linear model yielded lower estimates (0.021 ± 0.008, 

0.006 ± 0.004, and 0.178 ± 0.008, respectively). When 

applying abivariate threshold linear model significantly 

reduced these estimates to 0.029 ± 0.012 for additive 

genetic, 0.010 ± 0.007 for permanent environmental, 

and 0.149 ± 0.014 for residual variance. This noticeable 

decrease in residual variance demonstrates the bivariate 

model's effectiveness in partitioning shared variance 

across correlated traits. It highlights the advantages of 

multivariate approaches which more refined estimates 

by incorporating additional sources of variation. These 

findings align with those of Ziadi et al. (2024), who 

reported a decrease in the residual variance for litter 

size from 0.21±0.008 under the bivariate linear model 

to 0.14±0.009 when using the bivariate threshold linear 

model. 

 

 



182                      Elnahas and Elsaid 

 

Table 2. Least Square Means (LSM) and their standard error (± SE) for litter size at birth (LS) and total 

litter weight at birth (TLW) according to type of birth, parity, season of birth and lambing year  

Different letters a, b and c in the same column are significantly different (P<0.05). 

 

The bivariate linear model yielded slightly higher 

estimates of additive (0.024 ± 0.008) and permanent 

environmental (0.007 ± 0.004) variances compared to 

the univariate linear model, while the residual variance 

remained virtually unchanged (0.177 ± 0.008). 

Although these differences were minimal, the bivariate 

linear model provided more accurate estimates for 

genetic and environmental variances due to its better 

captures of the covariance structure between traits. This 

approach is particularly valuable when the traits are 

biologically correlated, as it improves estimation 

accuracy and genetic evaluation. These findings are in 

agreement with those of Casellas et al. (2007), 

Roshamfekr et al. (2015), and Yavarifard et al. (2015), 

who reported that the bivariate linear model often 

provides a more comprehensive understanding of 

reproductive traits compared to the univariate 

approach. These studies, which analyzed genetic 

parameters for reproductive traits in sheep breeds such 

as Arabi, Ripollesa, and Mehraban sheep, emphasize 

the importance of considering both genetic and 

phenotypic correlations between reproductive 

characteristics. Overall, the results suggest that 

bivariate models are effective in capturing the complex 

interrelationships among these traits, leading to more 

insightful conclusions than when each trait is analyzed 

in isolation. 

The bivariate threshold linear model yielded 

slightly higher additive genetic and permanent 

environmental variance estimates for LS (0.029±0.012 

and 0.010±0.007, respectively).In contrast, the bivariate 

linear model yielded lower estimates of 0.024±0.008 

and 0.007±0.004, respectively for the same variances. 

Lower estimate for residual variance was obtained 

    N                       LS                      TLW 

               LSM±SE                    LSM±SE 

Overall 1464 1.25±0.01 3.74±0.03 

Type of Birth     

   Single 965 1.27a±0.02 3.78a±0.05 

   Twins 469 1.29a±0.02 3.81a±0.07 

   Triple 30 1.33a±0.08 4.12a±0.24 

Parity    

   1 578 1.22c±0.03 3.73c±0.10 

   2 371 1.27bc±0.03 3.82bc±0.10 

   3 231 1.33ab±0.04 3.99ab±0.12 

   4 134 1.38a±0.05 4.18a±0.14 

   5 150 1.28ab±0.05 3.82b±0.15 

Season of birth    

   Winter 468 1.31ab±0.04 4.02ab±0.10 

   Summer 500 1.32a±0.03 3.95a±0.10 

   Autumn 496 1.26b±0.04 3.75b±0.11 

Lambing year    

   2003 71 1.38bcd±0.06 4.12bc±0.21 

   2004 88 1.27bcd±0.06 3.72c±0.16 

   2005 85 1.35bc±0.06 4.05bc±0.16 

   2006 80 1.37b±0.06 4.19b±0.17 

   2007 38 1.53a±0.08 4.56a±0.24 

   2008 84 1.32bcd±0.06 4.22b±0.17 

   2009 81 1.22bcd±0.06 3.62c±0.16 

   2010 49 1.10d±0.07 3.59bc±0.26 

   2011 100 1.28bcd±0.06 3.80bc±0.16 

   2012  48 1.28bcd±0.07 4.04bc±0.21 

   2013  75 1.33bcd±0.06 4.28b±0.18 

   2014  84 1.25bcd±0.06 3.95bc±0.17 

   2015  55 1.26bcd±0.07 3.62c±0.19 

   2016  73 1.33bcd±0.06 3.90bc±0.18 

   2017  114 1.34bc±0.05 3.86bc±0.14 

   2018  105 1.36b±0.05 4.04bc±0.15 

   2019  55 1.26bcd±0.07 3.78bc±0.19 

   2020  52 1.28bcd±0.07 3.87bc±0.19 

   2021  69 1.25bcd±0.06 3.78c±0.18 

   2022 58 1.16cd±0.07 3.19d±0.33 
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using bivariate threshold linear model with value of 

0.149±0.014. These findings suggest that the threshold 

linear model may be better suited for traits like litter 

size, which are often expressed as discrete counts and 

may not follow a normal distribution. Several studies 

have emphasized the advantages of using threshold 

models for such traits. For example, de Villemereuil et 

al. (2016) highlighted the value of threshold-based 

methods for traits with non-linear or categorical 

distributions, while Mrode (2014) emphasized their 

importance in improving accuracy when modeling 

traits deviating from normality.  

 

Table 3. Posterior means and standard deviations of genetic parameters for litter size at birth (LS) and total 

litter weight at birth (TLW) using univariate linear model, univariate threshold model, a bivariate linear 

model and a bivariate threshold linear model  
Parameter       LSul      LSut    TLWul     LSbl     LSbtl   TLWbl    TLWbtl 

2a 0.021±0.008 0.092±0.037 0.066±0.052 0.024±0.008 0.029±0.012 0.099±0.048 0.120±0.052 

2pe 0.006±0.004 0.020±0.016 0.096±0.044 0.007±0.004 0.010±0.007 0.102±0.039 0.093±0.039 

2e 0.178±0.008 0.317±0.043 1.476±0.063 0.177±0.008 0.149±0.014 1.461±0.062 1.457±0.061 

2p 0.205±0.008 0.429±0.056 1.639±0.065 0.208±0.009 0.187±0.016 1.661±0.066 1.670±0.068 

h2   0.10±0.04   0.21±0.07   0.04±0.03   0.11±0.04   0.15±0.06   0.06±0.03   0.07±0.03 

R   0.13±0.04   0.26±0.07   0.10±0.03   0.15±0.03   0.21±0.05   0.12±0.03   0.13±0.03 

ul = univariate linear model, ut = univariate threshold model, bl = bivariate linear model, btl = bivariate threshold linear model, h2 = heritability 
estimate and r = repeatability estimate. 

 

Regarding the TLW trait, using a univariate linear 

model, the estimates of additive genetic variance, 

permanent environmental variance, and residual 

variance were 0.066±0.052, 0.096±0.044, and 

1.476±0.063, respectively. However, when TLW was 

analyzed jointly with a categorical trait, treatingit as 

continuous using a bivariate linear model, the 

corresponding estimates were0.099±0.048, 

0.102±0.039, and 1.461±0.062, respectively. Further 

improvements were achieved when we modeled the 

categorical trait appropriately using a bivariate 

threshold linear model, yielding estimates of 

0.120±0.052 for additive genetic variance, 0.093±0.039 

for permanent environmental variance, and 

1.457±0.061 for residual variance. These results 

indicate that modeling the categorical trait using the 

threshold linear approach enhances the estimation of 

genetic parameters for TLW. In particular, the increase 

in additive genetic variance suggests a more effective 

partitioning of the genetic contribution, while the 

decrease in residual variance implies a more accurate 

fit of the model to the data. 

Safari et al. (2005) reported that threshold models 

are more suited for traits with discrete distributions and 

can benefit from multivariate frameworks by borrowing 

strength across different traits. Similarly, Habtegiorgis 

et al. (2022) found that incorporating multiple traits 

into a multivariate model improved the accuracy of 

genetic evaluations for reproductive traits in Doyogena 

sheep. These findings underscore the importance of 

using multivariate models in genetic evaluations, 

particularly for traits with low heritability estimates 

like litter size and total litter weight at birth. By 

accounting for the genetic correlations among traits, 

multivariate approaches can provide more accurate and 

reliable estimates, facilitating more effective selection 

strategies in sheep breeding programs. 

Table 3 showed that heritability and repeatability 

estimates for litter size and total litter weight at birth in 

Sohagi sheep varied significantly across the four 

statistical models used. For litter size, heritability 

estimates ranged from 0.10 ± 0.04 (univariate linear 

model) to 0.21 ± 0.07 (univariate threshold model). 

Repeatability estimates followed a similar trend, 

ranging from 0.13 ± 0.04 to 0.26 ± 0.07, respectively. 

The higher estimates for both heritability and 

repeatability obtained from the univariate threshold 

model for litter size are expected, as threshold models 

typically provide larger estimates on the underlying 

scale for categorical traits by accounting for their non-

normal distribution (Ziadi et al., 2024). Also, 

Mohammadi (2012) found that univariate threshold 

models are superior to univariate linear models for 

genetic parameters estimation. 

Conversely, the bivariate threshold linear model and 

the bivariate linear model generally produced lower 

heritability and repeatability estimates for LS compared 

to the univariate threshold model, however, these 

bivariate models often offered improved precision 

indicated by smaller standard errors. For instance, the 

heritability estimate of litter size was 0.11 ± 0.04 

(bivariate linear model) and 0.15 ± 0.06 (bivariate 

threshold linear model). The corresponding 

repeatability estimates were 0.15 ± 0.03 and 0.21 ± 

0.05, respectively. These results are consistent with the 

results of Osinowo et al. (1993), who used a bivariate 

linear model to analyze LSin Yankasa sheep, reporting 

h2 estimates of 0.11.This trend of lower estimates 

accompanied by higher precision from bivariate 

threshold linear models aligns with findings by Ziadi et 

al. (2024), who, studied Tunisian Barbarine sheep, 

noted that multivariate models analyzing litter size 

along with growth traits like birth weight, 90day 

weight, and average daily gain, effectively partition 

genetic variance between correlated traits, leading to 

more reliable estimates.  

Mohammadi et al. (2012) and Mekkawy et al. 

(2010) concluded that threshold models are the 
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preferred method for estimating genetic parameters and 

genetic evaluation, especially when combined with 

linear modeling approaches. Therefore, considering the 

genetic interplay between litter size and total litter 

weight at birth, the estimates derived from bivariate 

threshold models are considered more appropriate for 

genetic evaluation and breeding program design. 

In this study, heritability estimates of LS obtained 

from the bivariate threshold linear model (0.15) and the 

univariate linear model (0.10) were consistent with 

values of 0.15 and 0.09, respectively, reported by Ziadi 

et al. (2024) for Barbarine sheep. 

The heritability estimates for TLW were relatively 

low, ranging from 0.04 ± 0.031 using the univariate 

linear model to 0.07 ± 0.030 with the bivariate 

threshold linear model. Similarly, the repeatability 

estimates followed an increasing trend, rising from 0.10 

± 0.028 to 0.13 ± 0.029, respectively. This upward 

trend in both heritability and repeatability estimates for 

TLW when using the bivariate threshold linear model 

suggests that incorporating a biologically related trait, 

such as litter size, allows for better partitioning of the 

genetic and permanent environmental variances shared 

between traits. By accounting for the covariance 

structure across traits, the bivariate model reduces 

residual variance and improves the precision of genetic 

parameter estimates. Comparable findings were 

reported by Ziadi et al. (2024), who emphasized the 

effectiveness of bivariate models in enhancing the 

estimation of genetic parameters for weight-related 

reproductive traits in sheep. 

The genetic and phenotypic correlations between 

LS and TLW were estimated using two methods: the 

bivariate threshold linear model and the bivariate linear 

model (Table 4). The bivariate threshold linear model 

showed a high genetic correlation of 0.98 ± 0.006 and a 

phenotypic correlation of 0.94 ± 0.007. Similarly, the 

bivariate linear model indicated a strong positive 

genetic correlation of 0.99 ± 0.021 and a phenotypic 

correlation of 0.87 ± 0.006. The consistently high and 

positive genetic correlations in both models suggest a 

significant level of shared genetic control affecting 

both LS and TLW. This means that genes increasing 

litter size tend to also increase total litter weight, and 

vice versa. The slightly lower genetic correlation 

estimate from threshold model may reflect its more 

refined approach to modeling the discrete nature of 

litter size.  

The phenotypic correlations are notably high and 

positive, indicating a strong observable relationship 

between the two traits. This means that larger litters 

tend to be heavier. The higher phenotypic correlation 

observed in the threshold model compared to the linear 

model may be attributed to the different way each 

model addresses the underlying distribution of litter 

size. Overall, these strong genetic and phenotypic 

correlations highlight the interconnectedness of these 

reproductive traits and suggesting that selection for one 

trait is likely to result in a correlated change in the 

other. These results are consistent with those of Ziadi et 

al. (2018) and Boujenane et al. (2021), who reported 

similarly high genetic and phenotypic correlations 

between litter size and total litter weight at birth in 

different sheep breeds. 

 

Table 4. Estimated Genetic (above diagonal) and phenotypic (below diagonal) correlations and their posterior 

standard deviation between litter size at birth (LS) and total litter weight at birth (TLW) using bivariate 

linear model and bivariate threshold linear model 

Type of Model  LS TLW 

Bivariate linear model LS  0.99±0.021 

TLW 0.87±0.006  

Bivariate threshold linear model LS  0.98±0.006 

TLW 0.94±0.007  

 

The current study investigated the consistency of 

estimated breeding values (EBVs) for litter size (LS) 

and total litter weight at birth (TLW) using Spearman 

rank correlations across different genetic evaluation 

models (Table 5). The very high correlation for LS 

between the univariate linear model and univariate 

threshold model (0.99), along with the strong 

correlations observed in bivariate models 

(approximately 0.93), indicates that the ranking of 

animals for LS remains highly consistent. This 

consistency holds true whether the trait is analyzed 

individually or jointly, and whether it is modeled using 

linear or threshold approaches. These findings reflect 

the robustness of the EBVs for LS across different 

statistical frameworks. 

Lower rank correlations (0.44 and 0.59) were 

observed for TLW between the univariate and bivariate 

models. This suggests that the inclusion of LS in the 

multivariate analyses influenced the ranking of animals 

for TLW. This implies a genetic association between 

these two traits including that information from LS 

contributes to a more accurate estimation of EBVs for 

TLW.  

Furthermore, the higher correlation (0.86) between 

the two bivariate models (linear model vs. Threshold 

linear model) demonstrates that while the modeling 

approach for LS (continuous vs. categorical) has some 

impact, the main improvement in consistency comes 

from incorporating LS into the genetic evaluation. This 

underscores the advantage of multivariate models, 

particularly when traits are genetically correlated, as 
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they improve the stability and accuracy of genetic 

evaluations. These results align with findings with 

those Matos et al. (1997) and Ziadi (2024), who 

reported a high correlation between breeding value 

estimates obtained from linear and threshold models. 

 

 

Table 5. Spearman rank correlation coefficients for ewes' breeding values derived from univariate linear 

model, univariate threshold model, bivariate linear model and bivariate threshold linear model for litter size 

at birth (LS) and total litter weight at birth in Sohagi sheep 

 

 

 

Trait 

Univariate 

linear model 

+ 

Univariate 

threshold 

model 

Univariate 

linear model 

+ 

Bivariate  
linear  

model 

Univariate 

 linear model 

+ 

Bivariate  
threshold linear 

model 

Univariate 

threshold model 

+ 

Bivariate  
linear  

model 

Univariate 

threshold model 

+ 

Bivariate  
threshold linear  

model 

bivariate 

linear model 

+ 

Bivariate 

threshold linear 

model 

LS 0.99 0.93 0.93 0.93 0.93 0.85 

TLW - 0.44 0.59 - - 0.86 

 

CONCLUSION 
 

This study compared four statistical models for 

analyzing two traits: litter size (discrete) and total litter 

weight at birth (continuous). The models assessed were 

univariate linear, univariate threshold, bivariate linear, 

and bivariate threshold models. The threshold model 

may be the most appropriate for analyzing LS. Among 

the models tested, the bivariate threshold linear model 

was found to be the most accurate and suitable for the 

estimation of genetic parameters. Both genetic and 

phenotypic correlations between litter size and total 

litter weight at birth were found to be very high, 

reflecting a strong association between these traits.  

A Spearman rank correlation analysis of breeding 

values derived from all four models showed 

consistently high level of concordance, particularly for 

litter size. Notably, the bivariate threshold linear model 

accounts for both the correlation between the two traits 

and the categorical nature of litter size, which enhances 

its precision and effectiveness. This makes the 

threshold linear model especially valuable for selection 

programs, as it more accurately captures the genetic 

architecture behind mixed continuous and discrete 

traits. As a result it improves the efficiency of genetic 

improvement for litter traits in sheep. In practice, 

breeding programs could apply this model (bivariate 

threshold linear) by ranking and selecting ewes based 

on the estimated breeding values for both litter size and 

total litter weight at birth. Furthermore, a selection 

index incorporating both LS and TLW traits is 

proposed to enhance genetic evaluation strategies in 

Sohagi sheep. 
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 تقدير مكونات التباين باستخدام الطرق البايزية لحجم البطن والوزن الكلي للمواليد عند الولادة في الأغنام السوهاجي
 

 2السعيد  ، رضا1النحاس أحمد

 

 سوهاج  جامعة الزراعة،  كلية الحيوانى،  الإنتاج قسم -1
 مصر  ، ةالسادات، المنوفي  مدينة جامعة ، ةالبيئي والبحوث تالمتواصلة، معهد الدراسا  التنمية قسم -2
 

الب الطرق  باستخدام  السوهاجي  الأغنام  في  الولادة  عند  للمواليد  الكلي  والوزن  البطن  حجم  لصفة  التباين  مكونات  تقدير  إلى  الدراسة  ايزية.  تهدف 

أم،    325وكبش    51نعجة، وهي نتاج    1,464في المزرعة التجريبية لجامعة سوهاج، وشملت سجلات    2022إلى عام    2003جُمعت البيانات من عام  

حمل، بينما كان متوسط الوزن الكلي للمواليد عند الولادة    0.01±    1.25لتقييم تأثير العوامل البيئية المختلفة على هذه الصفات. بلغ متوسط حجم البطن  

نعجة  ±0.03    3.74 لكل  والإ  .كجم  البعدية  المتوسطات  عند  لتقدير  للمواليد  الكلي  والوزن  البطن  حجم  من  لكل  الوراثية  للمعالم  المعيارية  نحرافات 

الخطي   والنموذج  المتغير،  ثنائي  الخطي  والنموذج  المتغير،  أحادي  العتَبَِي  والنموذج  المتغير،  أحادي  الخطي  النموذج  اسُتخدم  ثنائي  الولادة،  العتَبَِي 

)النموذج الخطي أحادي المتغير(   0.10من    الوراثي  المكافئبالنسبة لحجم البطن، تراوحت تقديرات   . +GIBBSF90المتغير، وذلك باستخدام برنامج

التكرارى من    0.21إلى   المعامل  تقديرات  بينما تراوحت  المتغير(،  العَتبَِي أحادي  للوزن  0.26إلى    0.13)النموذج  بالنسبة  أما  متبعةً نفس الاتجاه.   ،

)النموذج الخطي العَتبَِي ثنائي    0.07)النموذج الخطي أحادي المتغير( إلى    0.04الكلي للمواليد عند الولادة، فقد تباينت تقديرات المكافىءالوراثى من  

رتباطًا  إأظهر النموذج الخطي العتَبَِي ثنائي المتغير    .إتجاهًا مشابهًا  ، متبعةً هي الأخرى0.13و  0.10المتغير(، مع قيم للمعامل التكرارى تراوحت بين  

إلى  0.94وارتباطًا مظهرياً بلغ    0.98وراثياً مرتفعاً بلغ   إيجابية قوية، حيث بلغت قيم  إ. في حين أشار النموذج الخطي ثنائي المتغير أيضًا  رتباطات 

رتباطات سبيرمان للرتب بين القيم التربوية المقدرة من الأربعة  إعلى التوالي. بالنسبة لحجم البطن، تظُهر    0.87و  0.99رتباط الوراثي والمظهري  الإ

نتخاب  إقتراح دليل  إنماذج ثباتاً في ترتيب الحيوانات عبر النماذج المختلفة، بغض النظر عن النموذج الإحصائي المستخدم. بناءً على هذه النتائج، يمكن  

 .يضم صفتي حجم البطن والوزن الكلي للمواليد عند الولادة لتحسين إستراتيجيات التقييم الوراثي في الأغنام السوهاجي 

 


